欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

DolphinDB Database丨交易回测系列一:技术信号回测

程序员文章站 2022-03-21 15:21:16
...

本系列文章将会介绍如何使用DolphinDB进行交易回测。本文以移动平均线指标为例,介绍如何在DolphinDB中实现技术信号回测。移动平均线指标(Moving average,简称MA)属于趋势指标。在金融分析领域,移动平均线是不可缺少的指标工具。除了指示趋势,均线指标还能避免由于股价下跌错失清仓的机会,减少收益的损失,及时止损,也能避免股价上涨错失买入的实际,从而获得更高的收益。

 

回测过程中,我们考虑两种情况:不止损回测和止损回测。

数据表需要包含以下字段:

股票代码:sym

日期:date

收盘价格:close

1. 定义MA信号

当短期均线大于长期均线时,我们认为这是一个MA交易信号。

def maSignal(x, shortHorizon, longHorizon){
	signal = mavg(x, shortHorizon) > mavg(x, longHorizon)
	signal[0:min(x.size(), longHorizon - 1)] = NULL
	return signal
}

2. 不止损回测

我们定义的交易算法如下:

假设前一天的MA信号为prevSignal,当天的MA信号为signal。

(1)如果prevSignal=false,signal=true,那么买入多头头寸(long position)。

(2)如果prevSignal=true,signal=false,那么卖出空头头寸(short position)。

(3)如果不符合以上两种情况,则保持与前一天相同的头寸。

def backtest(t){
	t2 = select sym,date,close,prev(close) as prevClose,signal, prev(signal) as prevSignal from t context by sym
	update t2 set position=iif(prevSignal==false and signal==true, 1 ,iif(prevSignal==true and signal==false, -1, int())).prev().ffill() context by sym
	return select sym,date,close,signal,position,position*(close - prevClose) as pnl from t2 where isValid(position)
}

DolphinDB函数说明:

iif(condition, trueResult, falseResult):如果满足条件condition,则返回trueResult,否则返回falseResult。它相当于if...else语句,但是语法上更加简洁。

int():返回int类型的NULL值。

prev(x):把向量中的所有元素向右移动一个位置。

ffill(x):使用NULL值前的非NULL元素填充向量中的NULL值。

isValid():检查每个元素是否为NULL。如果为NULL,返回0,否则返回1。

 

backtest 函数说明:

回测时首先整理数据,使用prev()函数把前一天的收盘价格prevClose和前一天的MA信号prevSignal与当天的数据对齐,便于计算。

接着,按照我们定义的交易算法,计算每个股票的头寸position。position=1表示买入,position=-1表示卖出,position=NULL表示保持不变。

最后,使用position*(close - prevClose)计算盈亏pnl。

3. 止损回测

3.1 判断止损点

首先,定义函数stoploss判断是否需要止损。该函数返回布尔类型的向量。

def stoploss(ret, threshold){
	cumret = cumprod(1+ret)
	drawDown = 1 - cumret / cumret.cummax()
	firstCutIndex = at(drawDown >= threshold).first() + 1
	indicator = take(false, ret.size())
	if(isValid(firstCutIndex) and firstCutIndex < ret.size())
		indicator[firstCutIndex:] = true
	return indicator
}

DolphinDB内置函数说明:

cumprod:计算累计乘积。

cummax:计算累计最大值。

at(x):x是布尔表达式,找出符合条件x的元素的位置。

first:返回第一个元素。

take(X, k):返回包含k个x的向量。

 

stoploss 函数说明:

首先计算累计回报率cumret,接着计算当前回报率和累计最大回报率的回撤drawdown,当回撤drawdown大于等于预设阈值threshold时,则认为应当止损,并记录止损的起始位置firstCutIndex(由于到股市收盘时才知道是否需要止损或止盈,所以firstCutIndex要加1)。止损信号indicator的所有元素一开始设定为全是false。如果止损的起始位置firstCutIndex不为NULL,且不超过当前的数据量,则把止损信号indicator中从firstCutIndex开始到最后的所有元素设为true,表示从firstCutIndex开始,都应当止损。

 

3.2 止损回测

回测时,将止损前后的盈亏进行对比 。

def backtest_stoploss(t, thresholdDrawDown){
	t2 = select sym,date,close,prev(close) as prevClose,signal, prev(signal) as prevSignal from t context by sym
	update t2 set position=iif(prevSignal==false and signal==true, 1 ,iif(prevSignal==true and signal==false, -1, int())).prev().ffill() context by sym
	update t2 set pnl = position*(close - prevClose), ret = (close - prevClose)/prevClose
	update t2 set stoplossInd = segmentby(stoploss{,thresholdDrawDown}, ret, position) context by sym
	return select sym,date,close,signal,position,stoplossInd,pnl * stoplossInd as pnl, pnl as nostoplossPnl from t2 where isValid(position)
}

DolphinDB函数说明:

segmentby(func, funcArgs, segment):把funcArgs分成多个组,并把函数func应用到每个组中。segment是一个向量,可以把它看作是分组方案,连续相同的元素为一组。通过下面的例子我们可以更好地理解segmentby:

x=1 2 3 0 3 2 1 4 5
y=1 1 1 -1 -1 -1 1 1 1
segmentby(cumsum,x,y)

1 3 6 0 3 5 1 5 10

上面的例子中,y定义了3个分组:1 1 1、-1 -1 -1 和1 1 1,第一个分组的index是0-2,第二个分组的index是3-5,第三个分组的index是6-9。按照这个规则把x分成3组:1 2 3、0 3 2、1 4 5,并在每个分组中计算累计和。

stoploss{, thresholdDrawDown}这种表达方式是定义一个部分应用,用于固定stoploss的第二个参数thresholdDrawDown。

 

backtest_stoploss 函数说明:

前三行代码和1.2大致相同,除了计算盈亏pnl之外,还计算了回报率ret,因为stoploss函数需要ret作为输入。接着把每个股票的回报率ret按阶段分组(position中的元素连续多个1表示持续买入,连续多个-1表示持续卖出,连续多个NULL表示持续不变),在每个阶段分组中判断是否需要止损,为每只股票生成止损信号stoplossInd。最后计算止损前后的盈亏,止损前的盈亏为nostoplossPnl,止损后的盈亏为pnl。

4. 统计信息

通常情况下,我们还需要分析盈亏的统计信息。通过下面的自定义函数calcPerformance可以计算盈亏的统计信息,比如累计盈亏cumpnl、平均盈亏avgpnl、盈亏天数days、盈亏的标准差std、最大回撤maxDrawdown等。返回的数据类型是字典。

def calcPerformance(pnl){
	result = dict(STRING, DOUBLE)
	result[`cumpnl]= pnl.sum()
	result[`avgpnl]= pnl.avg()
	result[`days] = pnl.size()
	result[`std]= pnl.std()
	result[`maxDrawdown] = (pnl.cumsum().cummax() - pnl.cumsum()).max()
	return result
}

5. 运行实例

我们使用美国股市从1998年到2016年股票的每日交易信息作为数据集来进行测试。数据集共包含3474万条记录。

//数据导入和数据处理,产生stock数据表,包含sym, date, close三个字段
...

//计算每个股票每天的MA信号
t = select sym,date,close,maSignal(close, 50, 100) as signal from stock context by sym

情况一:不止损回测

//不止损回测
positions = backtest(t)

//计算盈亏并绘制盈亏走势图
dailyPnl = select sum(pnl) as pnl from positions group by date order by date
calcPerformance(dailyPnl.pnl)
plot(dailyPnl.pnl.cumsum() as cumulativePnl, dailyPnl.date, "Cumulative Pnl of All Stocks without Stop Loss Control")

//分析每只股票的盈亏信息
select calcPerformance(pnl) as `cumpnl`avgpnl`days`std`maxDrawdown from result group by sym

sym	cumpnl	avgpnl	days	std	maxDrawdown
A	48.75	0.0108	4,513.	1.5895	106.55
AA	7.9625	0.0017	4,624.	1.131	119.75
...

DolphinDB Database丨交易回测系列一:技术信号回测

不止损回测所有股票的盈亏走势图

 

情况二:止损回测。我们把预设阈值设为2.5%。

 //止损回测
positions = backtst_stoploss(t,0.025)

//计算盈亏并绘制盈亏走势图
dailyPnl = select sum(pnl) as pnl from positions group by date order by date
calcPerformance(dailyPnl.pnl)
plot(dailyPnl.pnl.cumsum() as cumulativePnl, dailyPnl.date, "Cumulative Pnl of All Stocks with Stop Loss Control")

//分析每只股票的盈亏信息
select calcPerformance(pnl) as `cumpnl`avgpnl`days`std`maxDrawdown from result group by sym

sym	cumpnl	avgpnl	days	std	maxDrawdown
A	58.2775	0.0129	4,513.	1.5731	102.125
AA	20.47	0.0044	4,624.	1.1126	110.8125
...

DolphinDB Database丨交易回测系列一:技术信号回测

止损回测所有股票的盈亏走势图

DolphinDB database 虽然是一个通用的分布式时序数据库,但因为内置极其高效的多范式编程语言,开发效率非常高。如果回测不用考虑止损,仅用了3行代码计算MA信号3行代码进行回测。DolphinDB的运行效率更是惊人,对美国股市18年的全部股票按日进行回测,不止损回测执行耗时仅4秒多,止损回测仅7秒多。

 

本文的目的是从技术上帮助金融工程师使用DolphinDB快速实现交易回测。文中采用的各种参数,譬如长短线时间,止损阈值,数据过滤的方法等等,只是起到演示的作用,并非实践中的最佳参数。

 

欢迎访问官网下载DolphinDB试用版