欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

JavaScript随机数的组合问题案例分析

程序员文章站 2022-03-21 11:37:07
本文实例讲述了javascript随机数的组合问题。分享给大家供大家参考,具体如下:随机数的组合问题在面试时是经常考的,比如之前我就被问到:“有一个可以生成1-5的随机数函数,怎样把它扩大到1-7?”...

本文实例讲述了javascript随机数的组合问题。分享给大家供大家参考,具体如下:

随机数的组合问题在面试时是经常考的,比如之前我就被问到:“有一个可以生成1-5的随机数函数,怎样把它扩大到1-7?”

在解决这个问题之前,先来看看另外一个比较简单的问题:“有一个可以生成1-7的函数,怎样把它缩小到1-5?”下面是一个生成1-7函数random7:

function random7() {
  return math.floor(math.random() * 7 + 1);
}

如何把它转成生成1-5的函数呢?这很简单:在一个循环里面调用random7,直到它的值小于等于5就结束循环并返回该随机数即可,如下:

function random5() {
  var r = random7();
  while(r > 5) {
    r = random7();
  }
  return r;
}

上面的思路就是:如果生成的随机数大于5,就继续调用random7,直到它小于等于5为止。好吧,回归正题,再来看一下1-5如何转成1-7吧。下面是一个随机生成1-5的函数:

function random5() {
  return math.floor(math.random() * 5 + 1);
}

我们现在的目的是要把它扩大到1-7。有一种很自然的想法可能就是:一个random5()产生的随机数范围是1-5,那么两个random5()相加的范围就是2-10了,再减去1就是1-9了,所以,可以按照上面的思路,在random7里来个循环,如果小于等于7就结束循环并且返回。如下:

function random7() {
  var r = random5() + random5() - 1;
  while(r > 7) {
    r = random5() + random5() - 1;
  }
  return r;
}

这样确实可以把1-5的范围扩大到1-7,但是问题来了:所谓随机函数,产生的每个值的概率是相等的,但是上面的方法产生的值概率相等吗?我们可以使用概率论的组合知识算岀来:生成1有一种组合,就是random5() + random5() - 1;中的两个random5()均是1,生成2有两种组合,第一个random5()是1第二个是2,或者相反。显然,它们的概率是不等的。所以这种方法是不行的。

为了实现生成的每个值的概率是相等的,就是使得每个值的组合数相等。一种可行的方法是使得每个值的组合只有一种,如下:

function random7() {
  var r = (random5() - 1) * 5 + random5(); 
  while(r > 7) {
    r = (random5() - 1) * 5 + random5(); 
  }
  return r;
}

为什么这样就会使得各个值的概率相等呢?首先来看一下(random5() - 1) * 5,容易算岀这个表达式生成的可选值是0,5,10,15,20,用它去跟random5()相加,因为random5()的可选值是1, 2,3,4,5,所以两者相加之后就会得到1-25之间的随机数,而且产生的每个值的组合均只有一种,所以它们的概率也是相等的。

也许有人会问,(random5() - 1) * 5,这里为什么是乘以5而不是其他呢?这是因为乘以5之后和random5()相加,得到的数是连续的并且是等概率的。

上面讨论的都是特殊情形1-5和1-7之间的转换,对于其他的一般情形,大家可以自己试试哈。

感兴趣的朋友可以使用在线html/css/javascript代码运行工具http://tools.jb51.net/code/htmljsrun测试上述代码运行效果。