欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python 实现二叉查找树的示例代码

程序员文章站 2022-03-21 11:13:08
二叉查找树 所有 key 小于 v 的都被存储在 v 的左子树 所有 key 大于 v 的都存储在 v 的右子树 bst 的节点class bstnode(object): def __ini...

二叉查找树

  • 所有 key 小于 v 的都被存储在 v 的左子树
  • 所有 key 大于 v 的都存储在 v 的右子树

bst 的节点

class bstnode(object):
  def __init__(self, key, value, left=none, right=none):
    self.key, self.value, self.left, self.right = key, value, left, right

二叉树查找

如何查找一个指定的节点呢,根据定义我们知道每个内部节点左子树的 key 都比它小,右子树的 key 都比它大,所以 对于带查找的节点 search_key,从根节点开始,如果 search_key 大于当前 key,就去右子树查找,否则去左子树查找

node_list = [
  {'key': 60, 'left': 12, 'right': 90, 'is_root': true},
  {'key': 12, 'left': 4, 'right': 41, 'is_root': false},
  {'key': 4, 'left': 1, 'right': none, 'is_root': false},
  {'key': 1, 'left': none, 'right': none, 'is_root': false},
  {'key': 41, 'left': 29, 'right': none, 'is_root': false},
  {'key': 29, 'left': 23, 'right': 37, 'is_root': false},
  {'key': 23, 'left': none, 'right': none, 'is_root': false},
  {'key': 37, 'left': none, 'right': none, 'is_root': false},
  {'key': 90, 'left': 71, 'right': 100, 'is_root': false},
  {'key': 71, 'left': none, 'right': 84, 'is_root': false},
  {'key': 100, 'left': none, 'right': none, 'is_root': false},
  {'key': 84, 'left': none, 'right': none, 'is_root': false},
]


class bstnode(object):
  def __init__(self, key, value, left=none, right=none):
    self.key, self.value, self.left, self.right = key, value, left, right


class bst(object):
  def __init__(self, root=none):
    self.root = root

  @classmethod
  def build_from(cls, node_list):
    cls.size = 0
    key_to_node_dict = {}
    for node_dict in node_list:
      key = node_dict['key']
      key_to_node_dict[key] = bstnode(key, value=key)  # 这里值和key一样的

    for node_dict in node_list:
      key = node_dict['key']
      node = key_to_node_dict[key]
      if node_dict['is_root']:
        root = node
      node.left = key_to_node_dict.get(node_dict['left'])
      node.right = key_to_node_dict.get(node_dict['right'])
      cls.size += 1
    return cls(root)

  def _bst_search(self, subtree, key):
    """
    subtree.key小于key则去右子树找 因为 左子树<subtree.key<右子树
    subtree.key大于key则去左子树找 因为 左子树<subtree.key<右子树
    :param subtree:
    :param key:
    :return:
    """
    if subtree is none:
      return none
    elif subtree.key < key:
      self._bst_search(subtree.right, key)
    elif subtree.key > key:
      self._bst_search(subtree.left, key)
    else:
      return subtree

  def get(self, key, default=none):
    """
    查找树
    :param key:
    :param default:
    :return:
    """
    node = self._bst_search(self.root, key)
    if node is none:
      return default
    else:
      return node.value

  def _bst_min_node(self, subtree):
    """
    查找最小值的树
    :param subtree:
    :return:
    """
    if subtree is none:
      return none
    elif subtree.left is none:
      # 找到左子树的头
      return subtree
    else:
      return self._bst_min_node(subtree.left)

  def bst_min(self):
    """
    获取最小树的value
    :return:
    """
    node = self._bst_min_node(self.root)
    if node is none:
      return none
    else:
      return node.value

  def _bst_max_node(self, subtree):
    """
    查找最大值的树
    :param subtree:
    :return:
    """
    if subtree is none:
      return none
    elif subtree.right is none:
      # 找到右子树的头
      return subtree
    else:
      return self._bst_min_node(subtree.right)

  def bst_max(self):
    """
    获取最大树的value
    :return:
    """
    node = self._bst_max_node(self.root)
    if node is none:
      return none
    else:
      return node.value

  def _bst_insert(self, subtree, key, value):
    """
    二叉查找树插入
    :param subtree:
    :param key:
    :param value:
    :return:
    """
    # 插入的节点一定是根节点,包括 root 为空的情况
    if subtree is none:
      subtree = bstnode(key, value)
    elif subtree.key > key:
      subtree.left = self._bst_insert(subtree.left, key, value)
    elif subtree.key < key:
      subtree.right = self._bst_insert(subtree.right, key, value)
    return subtree

  def add(self, key, value):
    # 先去查一下看节点是否已存在
    node = self._bst_search(self.root, key)
    if node is not none:
      # 更新已经存在的 key
      node.value = value
      return false
    else:
      self.root = self._bst_insert(self.root, key, value)
      self.size += 1

  def _bst_remove(self, subtree, key):
    """
    删除并返回根节点
    :param subtree:
    :param key:
    :return:
    """
    if subtree is none:
      return none
    elif subtree.key > key:
      subtree.right = self._bst_remove(subtree.right, key)
      return subtree
    elif subtree.key < key:
      subtree.left = self._bst_remove(subtree.left, key)
      return subtree
    else:
      # 找到了需要删除的节点
      # 要删除的节点是叶节点 返回 none 把其父亲指向它的指针置为 none
      if subtree.left is none and subtree.right is none:
        return none
      # 要删除的节点有一个孩子
      elif subtree.left is none or subtree.right is none:
        # 返回它的孩子并让它的父亲指过去
        if subtree.left is not none:
          return subtree.left
        else:
          return subtree.right
      else:
        # 有两个孩子,寻找后继节点替换,并从待删节点的右子树中删除后继节点
        # 后继节点是待删除节点的右孩子之后的最小节点
        # 中(根)序得到的是一个排列好的列表 后继节点在待删除节点的后边
        successor_node = self._bst_min_node(subtree.right)
        # 用后继节点替换待删除节点即可保持二叉查找树的特性 左<根<右
        subtree.key, subtree.value = successor_node.key, successor_node.value
        # 从待删除节点的右子树中删除后继节点,并更新其删除后继节点后的右子树
        subtree.right = self._bst_remove(subtree.right, successor_node.key)
        return subtree

  def remove(self, key):
    assert key in self
    self.size -= 1
    return self._bst_remove(self.root, key)

以上就是python 实现二叉查找树的示例代码的详细内容,更多关于python 实现二叉查找树的资料请关注其它相关文章!