Netty Pipeline源码分析(2)
原文链接:https://wangwei.one/posts/netty-pipeline-source-analyse-2.html
前面 ,我们分析了Netty Pipeline的初始化及节点添加与删除逻辑。接下来,我们将来分析Pipeline的事件传播机制。
Netty版本:4.1.30
inBound事件传播
示例
我们通过下面这个例子来演示Netty Pipeline的事件传播机制。
public class NettyPipelineInboundExample {
public static void main(String[] args) {
EventLoopGroup group = new NioEventLoopGroup(1);
ServerBootstrap strap = new ServerBootstrap();
strap.group(group)
.channel(NioServerSocketChannel.class)
.localAddress(new InetSocketAddress(8888))
.childOption(ChannelOption.TCP_NODELAY, true)
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new InboundHandlerA());
ch.pipeline().addLast(new InboundHandlerB());
ch.pipeline().addLast(new InboundHandlerC());
}
});
try {
ChannelFuture future = strap.bind().sync();
future.channel().closeFuture().sync();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
group.shutdownGracefully();
}
}
}
class InboundHandlerA extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println("InboundHandler A : " + msg);
// 传播read事件到下一个channelhandler
ctx.fireChannelRead(msg);
}
}
class InboundHandlerB extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println("InboundHandler B : " + msg);
// 传播read事件到下一个channelhandler
ctx.fireChannelRead(msg);
}
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
// channel**,触发channelRead事件,从pipeline的heandContext节点开始往下传播
ctx.channel().pipeline().fireChannelRead("Hello world");
}
}
class InboundHandlerC extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println("InboundHandler C : " + msg);
// 传播read事件到下一个channelhandler
ctx.fireChannelRead(msg);
}
}
通过 telnet 来连接上面启动好的netty服务,触发channel active事件:
$ telnet 127.0.0.1 8888
按照InboundHandlerA、InboundHandlerB、InboundHandlerC的添加顺序,控制台输出如下信息:
InboundHandler A : Hello world
InboundHandler B : Hello world
InboundHandler C : Hello world
若是调用它们的添加顺序,则会输出对应顺序的信息,e.g:
...
ch.pipeline().addLast(new InboundHandlerB());
ch.pipeline().addLast(new InboundHandlerA());
ch.pipeline().addLast(new InboundHandlerC());
...
输出如下信息:
InboundHandler B : Hello world
InboundHandler A : Hello world
InboundHandler C : Hello world
源码分析
强烈建议 下面的流程,自己通过IDE的Debug模式来分析
待netty启动成功,通过telnet连接到netty,然后通过telnet终端输入任意字符(这一步才开启Debug模式),进入Debug模式。
触发channel read事件,从下面的入口开始调用
public class DefaultChannelPipeline implements ChannelPipeline {
...
// 出发channel read事件
@Override
public final ChannelPipeline fireChannelRead(Object msg) {
// 从head节点开始往下传播read事件
AbstractChannelHandlerContext.invokeChannelRead(head, msg);
return this;
}
...
}
调用 AbstractChannelHandlerContext 中的 invokeChannelRead(head, msg)
接口:
abstract class AbstractChannelHandlerContext extends DefaultAttributeMap
implements ChannelHandlerContext, ResourceLeakHint {
...
// 调用channel read
static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {
// 获取消息
final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);
// 获取 EventExecutor
EventExecutor executor = next.executor();
// true
if (executor.inEventLoop()) {
// 调用下面的invokeChannelRead接口:invokeChannelRead(Object msg)
next.invokeChannelRead(m);
} else {
executor.execute(new Runnable() {
@Override
public void run() {
next.invokeChannelRead(m);
}
});
}
}
private void invokeChannelRead(Object msg) {
if (invokeHandler()) {
try {
// handler():获取当前遍历到的channelHandler,第一个为HeandContext,最后为TailContext
// 调用channel handler的channelRead接口
((ChannelInboundHandler) handler()).channelRead(this, msg);
} catch (Throwable t) {
notifyHandlerException(t);
}
} else {
fireChannelRead(msg);
}
}
...
@Override
public ChannelHandlerContext fireChannelRead(final Object msg) {
// 调回到上面的 invokeChannelRead(final AbstractChannelHandlerContext next, Object msg)
invokeChannelRead(findContextInbound(), msg);
return this;
}
...
// 遍历出下一个ChannelHandler
private AbstractChannelHandlerContext findContextInbound() {
AbstractChannelHandlerContext ctx = this;
do {
//获取下一个inbound类型的节点
ctx = ctx.next;
// 必须为inbound类型
} while (!ctx.inbound);
return ctx;
}
...
}
Pipeline中的第一个节点为HeadContext,它对于channelRead事件的处理,是直接往下传播,代码如下:
final class HeadContext extends AbstractChannelHandlerContext
...
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
// HeadContext往下传播channelRead事件,
// 调用HeandlerContext中的接口:fireChannelRead(final Object msg)
ctx.fireChannelRead(msg);
}
...
}
就这样一直循环下去,依次会调用到 InboundHandlerA、InboundHandlerB、InboundHandlerC 中的 channelRead(ChannelHandlerContext ctx, Object msg)
接口。
到最后一个TailContext节点,它对channelRead事件的处理如下:
public class DefaultChannelPipeline implements ChannelPipeline {
final class TailContext extends AbstractChannelHandlerContext implements ChannelInboundHandler {
...
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
// 调用onUnhandledInboundMessage接口
onUnhandledInboundMessage(msg);
}
...
}
...
// 对未处理inbound消息做最后的处理
protected void onUnhandledInboundMessage(Object msg) {
try {
logger.debug("Discarded inbound message {} that reached at the tail of the pipeline. Please check your pipeline configuration.", msg);
} finally {
// 对msg对象的引用数减1,当msg对象的引用数为0时,释放该对象的内存
ReferenceCountUtil.release(msg);
}
}
...
}
以上就是pipeline对inBound消息的处理流程。
SimpleChannelInboundHandler
在前面的例子中,假如中间有一个ChannelHandler未对channelRead事件进行传播,就会导致消息对象无法得到释放,最终导致内存泄露。
我们还可以继承 SimpleChannelInboundHandler 来自定义ChannelHandler,它的channelRead方法,对消息对象做了msg处理,防止内存泄露。
public abstract class SimpleChannelInboundHandler<I> extends ChannelInboundHandlerAdapter {
...
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
boolean release = true;
try {
if (acceptInboundMessage(msg)) {
@SuppressWarnings("unchecked")
I imsg = (I) msg;
channelRead0(ctx, imsg);
} else {
release = false;
ctx.fireChannelRead(msg);
}
} finally {
if (autoRelease && release) {
// 对msg对象的引用数减1,当msg对象的引用数为0时,释放该对象的内存
ReferenceCountUtil.release(msg);
}
}
}
...
}
outBound事件传播
接下来,我们来分析Pipeline的outBound事件传播机制。代码示例如下:
示例
public class NettyPipelineOutboundExample {
public static void main(String[] args) {
EventLoopGroup group = new NioEventLoopGroup(1);
ServerBootstrap strap = new ServerBootstrap();
strap.group(group)
.channel(NioServerSocketChannel.class)
.localAddress(new InetSocketAddress(8888))
.childOption(ChannelOption.TCP_NODELAY, true)
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new OutboundHandlerA());
ch.pipeline().addLast(new OutboundHandlerB());
ch.pipeline().addLast(new OutboundHandlerC());
}
});
try {
ChannelFuture future = strap.bind().sync();
future.channel().closeFuture().sync();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
group.shutdownGracefully();
}
}
}
class OutboundHandlerA extends ChannelOutboundHandlerAdapter {
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
// 输出消息
System.out.println("OutboundHandlerA: " + msg);
// 传播write事件到下一个节点
ctx.write(msg, promise);
}
}
class OutboundHandlerB extends ChannelOutboundHandlerAdapter {
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
// 输出消息
System.out.println("OutboundHandlerB: " + msg);
// 传播write事件到下一个节点
ctx.write(msg, promise);
}
@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
// 待handlerAdded事件触发3s后,模拟触发一个
ctx.executor().schedule(() -> {
// ctx.write("Hello world ! ");
ctx.channel().write("Hello world ! ");
}, 3, TimeUnit.SECONDS);
}
}
class OutboundHandlerC extends ChannelOutboundHandlerAdapter {
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
// 输出消息
System.out.println("OutboundHandlerC: " + msg);
// 传播write事件到下一个节点
ctx.write(msg, promise);
}
}
通过 telnet 来连接上面启动好的netty服务,触发channel added事件:
$ telnet 127.0.0.1 8888
按照OutboundHandlerA、OutboundHandlerB、OutboundHandlerC的添加顺序,控制台输出如下信息:
OutboundHandlerC: Hello world !
OutboundHandlerB: Hello world !
OutboundHandlerA: Hello world !
输出的顺序正好与ChannelHandler的添加顺序相反。
若是调用它们的添加顺序,则会输出对应顺序的信息,e.g:
...
ch.pipeline().addLast(new InboundHandlerB());
ch.pipeline().addLast(new InboundHandlerA());
ch.pipeline().addLast(new InboundHandlerC());
...
输出如下信息:
OutboundHandlerC: Hello world !
OutboundHandlerA: Hello world !
OutboundHandlerB: Hello world !
源码分析
强烈建议 下面的流程,自己通过IDE的Debug模式来分析
从channel的write方法开始,往下传播write事件:
public abstract class AbstractChannel extends DefaultAttributeMap implements Channel {
...
@Override
public ChannelFuture write(Object msg) {
// 调用pipeline往下传播wirte事件
return pipeline.write(msg);
}
...
}
接着来看看Pipeline中的write接口:
public class DefaultChannelPipeline implements ChannelPipeline {
...
@Override
public final ChannelFuture write(Object msg) {
// 从tail节点开始传播
return tail.write(msg);
}
...
}
调用ChannelHandlerContext中的write接口:
abstract class AbstractChannelHandlerContext extends DefaultAttributeMap
implements ChannelHandlerContext, ResourceLeakHint {
...
@Override
public ChannelFuture write(Object msg) {
// 往下调用write接口
return write(msg, newPromise());
}
@Override
public ChannelFuture write(final Object msg, final ChannelPromise promise) {
if (msg == null) {
throw new NullPointerException("msg");
}
try {
if (isNotValidPromise(promise, true)) {
ReferenceCountUtil.release(msg);
// cancelled
return promise;
}
} catch (RuntimeException e) {
ReferenceCountUtil.release(msg);
throw e;
}
// 往下调用write接口
write(msg, false, promise);
return promise;
}
...
private void write(Object msg, boolean flush, ChannelPromise promise) {
// 寻找下一个outbound类型的channelHandlerContext
AbstractChannelHandlerContext next = findContextOutbound();
final Object m = pipeline.touch(msg, next);
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
if (flush) {
next.invokeWriteAndFlush(m, promise);
} else {
// 调用接口 invokeWrite(Object msg, ChannelPromise promise)
next.invokeWrite(m, promise);
}
} else {
AbstractWriteTask task;
if (flush) {
task = WriteAndFlushTask.newInstance(next, m, promise);
} else {
task = WriteTask.newInstance(next, m, promise);
}
safeExecute(executor, task, promise, m);
}
}
// 寻找下一个outbound类型的channelHandlerContext
private AbstractChannelHandlerContext findContextOutbound() {
AbstractChannelHandlerContext ctx = this;
do {
ctx = ctx.prev;
} while (!ctx.outbound);
return ctx;
}
private void invokeWrite(Object msg, ChannelPromise promise) {
if (invokeHandler()) {
// 继续往下调用
invokeWrite0(msg, promise);
} else {
write(msg, promise);
}
}
private void invokeWrite0(Object msg, ChannelPromise promise) {
try {
// 获取当前的channelHandler,调用其write接口
// handler()依次会返回 OutboundHandlerC OutboundHandlerB OutboundHandlerA
((ChannelOutboundHandler) handler()).write(this, msg, promise);
} catch (Throwable t) {
notifyOutboundHandlerException(t, promise);
}
}
...
}
最终会调用到HeadContext的write接口:
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
// 调用unsafe进行写数据操作
unsafe.write(msg, promise);
}
异常传播
了解了Pipeline的入站与出站事件的机制之后,我们再来看看Pipeline的异常处理机制。
示例
public class NettyPipelineExceptionCaughtExample {
public static void main(String[] args) {
EventLoopGroup group = new NioEventLoopGroup(1);
ServerBootstrap strap = new ServerBootstrap();
strap.group(group)
.channel(NioServerSocketChannel.class)
.localAddress(new InetSocketAddress(8888))
.childOption(ChannelOption.TCP_NODELAY, true)
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new InboundHandlerA());
ch.pipeline().addLast(new InboundHandlerB());
ch.pipeline().addLast(new InboundHandlerC());
ch.pipeline().addLast(new OutboundHandlerA());
ch.pipeline().addLast(new OutboundHandlerB());
ch.pipeline().addLast(new OutboundHandlerC());
}
});
try {
ChannelFuture future = strap.bind().sync();
future.channel().closeFuture().sync();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
group.shutdownGracefully();
}
}
static class InboundHandlerA extends ChannelInboundHandlerAdapter {
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
System.out.println("InboundHandlerA.exceptionCaught:" + cause.getMessage());
ctx.fireExceptionCaught(cause);
}
}
static class InboundHandlerB extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
throw new Exception("ERROR !!!");
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
System.out.println("InboundHandlerB.exceptionCaught:" + cause.getMessage());
ctx.fireExceptionCaught(cause);
}
}
static class InboundHandlerC extends ChannelInboundHandlerAdapter {
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
System.out.println("InboundHandlerC.exceptionCaught:" + cause.getMessage());
ctx.fireExceptionCaught(cause);
}
}
static class OutboundHandlerA extends ChannelOutboundHandlerAdapter {
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
System.out.println("OutboundHandlerA.exceptionCaught:" + cause.getMessage());
ctx.fireExceptionCaught(cause);
}
}
static class OutboundHandlerB extends ChannelOutboundHandlerAdapter {
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
System.out.println("OutboundHandlerB.exceptionCaught:" + cause.getMessage());
ctx.fireExceptionCaught(cause);
}
}
static class OutboundHandlerC extends ChannelOutboundHandlerAdapter {
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
System.out.println("OutboundHandlerC.exceptionCaught:" + cause.getMessage());
ctx.fireExceptionCaught(cause);
}
}
}
通过 telnet 来连接上面启动好的netty服务,并在控制台发送任意字符:
$ telnet 127.0.0.1 8888
触发channel read事件并抛出异常,控制台输出如下信息:
InboundHandlerB.exceptionCaught:ERROR !!!
InboundHandlerC.exceptionCaught:ERROR !!!
OutboundHandlerA.exceptionCaught:ERROR !!!
OutboundHandlerB.exceptionCaught:ERROR !!!
OutboundHandlerC.exceptionCaught:ERROR !!!
可以看到异常的捕获与我们添加的ChannelHandler顺序相同。
源码分析
在我们的示例中,InboundHandlerB的ChannelRead接口抛出异常,导致从InboundHandlerA将ChannelRead事件传播到InboundHandlerB的过程中出现异常,异常被捕获。
abstract class AbstractChannelHandlerContext extends DefaultAttributeMap
implements ChannelHandlerContext, ResourceLeakHint {
...
@Override
public ChannelHandlerContext fireExceptionCaught(final Throwable cause) {
//调用invokeExceptionCaught接口
invokeExceptionCaught(next, cause);
return this;
}
static void invokeExceptionCaught(final AbstractChannelHandlerContext next, final Throwable cause) {
ObjectUtil.checkNotNull(cause, "cause");
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
// 调用下一个节点的invokeExceptionCaught接口
next.invokeExceptionCaught(cause);
} else {
try {
executor.execute(new Runnable() {
@Override
public void run() {
next.invokeExceptionCaught(cause);
}
});
} catch (Throwable t) {
if (logger.isWarnEnabled()) {
logger.warn("Failed to submit an exceptionCaught() event.", t);
logger.warn("The exceptionCaught() event that was failed to submit was:", cause);
}
}
}
}
...
private void invokeChannelRead(Object msg) {
if (invokeHandler()) {
try {
// 抛出异常
((ChannelInboundHandler) handler()).channelRead(this, msg);
} catch (Throwable t) {
// 异常捕获,往下传播
notifyHandlerException(t);
}
} else {
fireChannelRead(msg);
}
}
// 通知Handler发生异常事件
private void notifyHandlerException(Throwable cause) {
if (inExceptionCaught(cause)) {
if (logger.isWarnEnabled()) {
logger.warn(
"An exception was thrown by a user handler " +
"while handling an exceptionCaught event", cause);
}
return;
}
// 往下调用invokeExceptionCaught接口
invokeExceptionCaught(cause);
}
private void invokeExceptionCaught(final Throwable cause) {
if (invokeHandler()) {
try {
// 调用当前ChannelHandler的exceptionCaught接口
// 在我们的案例中,依次会调用InboundHandlerB、InboundHandlerC、
// OutboundHandlerA、OutboundHandlerB、OutboundHandlC
handler().exceptionCaught(this, cause);
} catch (Throwable error) {
if (logger.isDebugEnabled()) {
logger.debug(
"An exception {}" +
"was thrown by a user handler's exceptionCaught() " +
"method while handling the following exception:",
ThrowableUtil.stackTraceToString(error), cause);
} else if (logger.isWarnEnabled()) {
logger.warn(
"An exception '{}' [enable DEBUG level for full stacktrace] " +
"was thrown by a user handler's exceptionCaught() " +
"method while handling the following exception:", error, cause);
}
}
} else {
fireExceptionCaught(cause);
}
}
...
}
最终会调用到TailContext节点的exceptionCaught接口,如果我们中途没有对异常进行拦截处理,做会打印出一段警告信息!
public class DefaultChannelPipeline implements ChannelPipeline {
...
final class TailContext extends AbstractChannelHandlerContext implements ChannelInboundHandler {
...
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
onUnhandledInboundException(cause);
}
...
protected void onUnhandledInboundException(Throwable cause) {
try {
logger.warn(
"An exceptionCaught() event was fired, and it reached at the tail of the pipeline. " +
"It usually means the last handler in the pipeline did not handle the exception.",
cause);
} finally {
ReferenceCountUtil.release(cause);
}
}
}
...
}
在实际的应用中,一般会定一个ChannelHandler,放置Pipeline末尾,专门用来处理中途出现的各种异常。
最佳异常处理实践
单独定义ExceptionCaughtHandler来处理异常:
...
class ExceptionCaughtHandler extends ChannelInboundHandlerAdapter {
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
if (cause instanceof Exception) {
// TODO
System.out.println("Successfully caught exception ! ");
} else {
// TODO
}
}
}
...
ch.pipeline().addLast(new ExceptionCaughtHandler());
...
输出:
InboundHandlerB.exceptionCaught:ERROR !!!
InboundHandlerC.exceptionCaught:ERROR !!!
OutboundHandlerA.exceptionCaught:ERROR !!!
OutboundHandlerB.exceptionCaught:ERROR !!!
OutboundHandlerC.exceptionCaught:ERROR !!!
Successfully caught exception ! // 成功捕获日志
Pipeline回顾与总结
至此,我们对Pipeline的原理的解析就完成了。
- Pipeline是在什么时候创建的?
- Pipeline添加与删除节点的逻辑是怎么样的?
- netty是如何判断ChannelHandler类型的?
- 如何处理ChannelHandler中抛出的异常?
- 对于ChannelHandler的添加应遵循什么样的顺序?
参考资料
上一篇: mybatis 07 双向关联
下一篇: CSS列表样式设置
推荐阅读
-
Netty源码分析 (四)----- ChannelPipeline
-
Netty源码分析 (三)----- 服务端启动源码分析
-
Netty源码分析之ChannelPipeline(二)—ChannelHandler的添加与删除
-
Netty源码分析 (十)----- 拆包器之LineBasedFrameDecoder
-
netty之NioEventLoopGroup源码分析二
-
Netty源码分析 (七)----- read过程 源码分析
-
Okhttp3源码解析(2)-Request分析
-
Netty源码分析 (一)----- NioEventLoopGroup
-
netty中的发动机--EventLoop及其实现类NioEventLoop的源码分析
-
Bootstrap初始化过程源码分析--netty客户端的启动