5个并发处理技巧代码示例
【译者注】在本文中,作者总结出了5个关于处理并发性程序的技巧,并给出代码示例,让读者更好地理解和使用这5种方法。 以下为译文:
1.捕获interruptedexception错误
请检查下面的代码片段:
public class task implements runnable { private final blockingqueue queue = ...; @override public void run() { while (!thread.currentthread().isinterrupted()) { string result = getordefault(() -> queue.poll(1l, timeunit.minutes), "default"); //do smth with the result } } t getordefault(callable supplier, t defaultvalue) { try { return supplier.call(); } catch (exception e) { logger.error("got exception while retrieving value.", e); return defaultvalue; } } }
代码的问题是,在等待队列中的新元素时,是不可能终止线程的,因为中断的标志永远不会被恢复:
1.运行代码的线程被中断。
2.blockingqueue # poll()方法抛出interruptedexception异常,并清除了中断的标志。
3.while中的循环条件 (!thread.currentthread().isinterrupted())的判断是true,因为标记已被清除。
为了防止这种行为,当一个方法被显式抛出(通过声明抛出interruptedexception)或隐式抛出(通过声明/抛出一个原始异常)时,总是捕获interruptedexception异常,并恢复中断的标志。
t getordefault(callable supplier, t defaultvalue) { try { return supplier.call(); } catch (interruptedexception e) { logger.error("got interrupted while retrieving value.", e); thread.currentthread().interrupt(); return defaultvalue; } catch (exception e) { logger.error("got exception while retrieving value.", e); return defaultvalue; } }
2.使用特定的执行程序来阻止操作
因为一个缓慢的操作而使整个服务器变得无响应,这通常不是开发人员想要的。不幸的是,对于rpc,响应时间通常是不可预测的。
假设服务器有100个工作线程,有一个端点,称为100 rps。在内部,它发出一个rpc调用,通常需要10毫秒。在某个时间点,此rpc的响应时间变为2秒,在峰值期间服务器能够做的惟一的一件事就是等待这些调用,而其他端点则无法访问。
@get @path("/genre/{name}") @produces(mediatype.application_json) public response getgenre(@pathparam("name") string genrename) { genre genre = potentiallyveryslowsynchronouscall(genrename); return response.ok(genre).build(); }
解决这个问题最简单的方法是提交代码,它将阻塞调用变成一个线程池:
@get @path("/genre/{name}") @produces(mediatype.application_json) public void getgenre(@pathparam("name") string genrename, @suspended asyncresponse response) { response.settimeout(1l, timeunit.seconds); executorservice.submit(() -> { genre genre = potentiallyveryslowsynchronouscall(genrename); return response.resume(response.ok(genre).build()); } ); }
3.传mdc的值
mdc(mapped diagnostic context)通常用于存储单个任务的特定值。例如,在web应用程序中,它可能为每个请求存储一个请求id和一个用户id,因此mdc查找与单个请求或整个用户活动相关的日志记录变得更加容易。
2017-08-27 14:38:30,893 info [server-thread-0] [requestid=060d8c7f, userid=2928ea66] c.g.s.web.controller - message.
可是如果代码的某些部分是在专用线程池中执行的,则线程(提交任务的线程)中mdc就不会被继续传值。在下面的示例中,第7行的日志中包含“requestid”,而第9行的日志则没有:
@get @path("/genre/{name}") @produces(mediatype.application_json) public void getgenre(@pathparam("name") string genrename, @suspended asyncresponse response) { try (mdc.mdccloseable ignored = mdc.putcloseable("requestid", uuid.randomuuid().tostring())) { string genreid = getgenreidbyname(genrename); //sync call logger.trace("submitting task to find genre with id '{}'.", genreid); //'requestid' is logged executorservice.submit(() -> { logger.trace("starting task to find genre with id '{}'.", genreid); //'requestid' is not logged response result = getgenre(genreid) //async call .map(artist -> response.ok(artist).build()) .orelseget(() -> response.status(response.status.not_found).build()); response.resume(result); } ); } }
这可以通过mdc#getcopyofcontextmap()方法来解决:
... public void getgenre(@pathparam("name") string genrename, @suspended asyncresponse response) { try (mdc.mdccloseable ignored = mdc.putcloseable("requestid", uuid.randomuuid().tostring())) { ... logger.trace("submitting task to find genre with id '{}'.", genreid); //'requestid' is logged withcopyingmdc(executorservice, () -> { logger.trace("starting task to find genre with id '{}'.", genreid); //'requestid' is logged ... }); } } private void withcopyingmdc(executorservice executorservice, runnable function) { map
4.更改线程名称
为了简化日志读取和线程转储,可以自定义线程的名称。这可以通过创建executorservice时用一个threadfactory来完成。在流行的实用程序库中有许多threadfactory接口的实现:
com.google.common.util.concurrent.threadfactorybuilde+r in guava. org.springframework.scheduling.concurrent.customizablethreadfactory in spring. org.apache.commons.lang3.concurrent.basicthreadfactory in apache commons lang 3.
threadfactory threadfactory = new basicthreadfactory.builder() .namingpattern("computation-thread-%d") .build(); executorservice executorservice = executors.newfixedthreadpool(numberofthreads, threadfactory);
尽管forkjoinpool不使用threadfactory接口,但也支持对线程的重命名:
forkjoinpool.forkjoinworkerthreadfactory forkjointhreadfactory = pool -> { forkjoinworkerthread thread = forkjoinpool.defaultforkjoinworkerthreadfactory.newthread(pool); thread.setname("computation-thread-" + thread.getpoolindex()); return thread; }; forkjoinpool forkjoinpool = new forkjoinpool(numberofthreads, forkjointhreadfactory, null, false);
将线程转储与默认命名进行比较:
"pool-1-thread-3" #14 prio=5 os_prio=31 tid=0x00007fc06b19f000 nid=0x5703 runnable [0x0000700001ff9000] java.lang.thread.state: runnable at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.taskhandler.compute(taskhandler.java:16) ... "pool-2-thread-3" #15 prio=5 os_prio=31 tid=0x00007fc06aa10800 nid=0x5903 runnable [0x00007000020fc000] java.lang.thread.state: runnable at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.healthcheckcallback.recordfailure(healthchecker.java:21) at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.healthchecker.check(healthchecker.java:9) ... "pool-1-thread-2" #12 prio=5 os_prio=31 tid=0x00007fc06aa10000 nid=0x5303 runnable [0x0000700001df3000] java.lang.thread.state: runnable at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.taskhandler.compute(taskhandler.java:16) ...
与自定义命名进行比较:
"task-handler-thread-1" #14 prio=5 os_prio=31 tid=0x00007fb49c9df000 nid=0x5703 runnable [0x000070000334a000] java.lang.thread.state: runnable at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.taskhandler.compute(taskhandler.java:16) ... "authentication-service-ping-thread-0" #15 prio=5 os_prio=31 tid=0x00007fb49c9de000 nid=0x5903 runnable [0x0000700003247000] java.lang.thread.state: runnable at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.healthcheckcallback.recordfailure(healthchecker.java:21) at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.healthchecker.check(healthchecker.java:9) ... "task-handler-thread-0" #12 prio=5 os_prio=31 tid=0x00007fb49b9b5000 nid=0x5303 runnable [0x0000700003144000] java.lang.thread.state: runnable at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.taskhandler.compute(taskhandler.java:16) ...
想象一下,可能会不止3个线程。
5.使用longadder计数器
在高竞争的情况下,会采用java.util.concurrent.atomic.longadder进行计数,而不会采用atomiclong/atomicinteger。
longadder可以跨越多个单元间仍保持值不变,但是如果需要的话,也可以增加它们的值,但与父类atomicxx比较,这会导致更高的吞吐量,也会增加内存消耗。
longadder counter = new longadder(); counter.increment(); ... long currentvalue = counter.sum();
总结
以上就是本文关于5个并发处理技巧代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:java并发编程semaphore计数信号量详解、优化tomcat配置(内存、并发、缓存等方面)方法详解等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!
下一篇: 深入浅析yii2-gii自定义模板的方法