欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Java算法之最长公共子序列问题(LCS)实例分析

程序员文章站 2024-04-01 16:45:46
本文实例讲述了java算法之最长公共子序列问题(lcs)。分享给大家供大家参考,具体如下: 问题描述:一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,...

本文实例讲述了java算法之最长公共子序列问题(lcs)。分享给大家供大家参考,具体如下:

问题描述:一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列x= { x1, x2,…, xm},则另一序列z= {z1, z2,…, zk}是x的子序列是指存在一个严格递增的下标序列 {i1, i2,…, ik},使得对于所有j=1,2,…,k有 xij=zj。例如,序列z={b,c,d,b}是序列x={a,b,c,b,d,a,b}的子序列,相应的递增下标序列为{2,3,5,7}。给定两个序列x和y,当另一序列z既是x的子序列又是y的子序列时,称z是序列x和y的公共子序列。例如,若x= { a, b, c, b, d, a, b}和y= {b, d, c, a, b, a},则序列{b,c,a}是x和y的一个公共子序列,序列{b,c,b,a}也是x和y的一个公共子序列。而且,后者是x和y的一个最长公共子序列,因为x和y没有长度大于4的公共子序列。给定两个序列x= {x1, x2, …, xm}和y= {y1, y2, … , yn},要求找出x和y的一个最长公共子序列。

问题解析:设x= { a, b, c, b, d, a, b},y= {b, d, c, a, b, a}。求x,y的最长公共子序列最容易想到的方法是穷举法。对x的多有子序列,检查它是否也是y的子序列,从而确定它是否为x和y的公共子序列。由集合的性质知,元素为m的集合共有2^m个不同子序列,因此,穷举法需要指数级别的运算时间。进一步分解问题特性,最长公共子序列问题实际上具有最优子结构性质。

设序列x={x1,x2,……xm}和y={y1,y2,……yn}的最长公共子序列为z={z1,z2,……zk}。则有:

(1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。
(2)若xm!=yn且zk!=xm,则z是xm-1和y的最长公共子序列。
(3)若xm!=yn且zk!=yn,则z是xyn-1的最长公共子序列。
其中,xm-1={x1,x2……xm-1}yn-1={y1,y2……yn-1},zk-1={z1,z2……zk-1}

递推关系:用c[i][j]记录序列xi和yj的最长公共子序列的长度。其中,xi={x1,x2……xi}yj={y1,y2……yj}。当i=0或j=0时,空序列是xi和yj的最长公共子序列。此时,c[i][j]=0;当i,j>0,xi=yj时,c[i][j]=c[i-1][j-1]+1;当i,j>0,xi!=yj时,
c[i][j]=max{c[i][j-1],c[i-1][j]},由此建立递推关系如下:

Java算法之最长公共子序列问题(LCS)实例分析

构造最优解:由以上分析可知,要找出x={x1,x2,……xm}和y={y1,y2,……yn}的最长公共子序列,可以按一下方式递归进行:当xm=yn时,找出xm-1和yn-1的最长公共子序列,然后在尾部加上xm(=yn)即可得x和y的最长公共子序列。当xm!=yn时,必须解两个子问题,即找出xm-1和y的一个最长公共子序列及x和yn-1的一个最长公共子序列。这两个公共子序列中较长者为x和y的最长公共子序列。设数组b[i][j]记录c[i][j]的值由哪一个子问题的解得到的,从b[m][n]开始,依其值在数组b中搜索,当b[i][j]=1时,表示xi和yj的最长公共子序列是由xi-1和yj-1的最长公共子序列在尾部加上xi所得到的子序列。当b[i][j]=2时,表示xi和yj的最长公共子序列与xi-1和yj-1的最长公共子序列相同。当b[i][j]=3时,表示xi和yj的最长公共子序列与xi和yj-1的最长公共子序列相同。

代码如下:

package lcs;
public class lcs {
  public static int[][] lcslength ( string[] x, string[] y) {
    int m = x.length;
    int n = y.length;
    int[][] b = new int[x.length][y.length];
    int[][] c = new int[x.length][y.length];
    for(int i = 1; i < m; i++) {
      c[i][0] = 0;
    }
    for(int i = 1; i < n; i++) {
      c[0][i] = 0;
    }
    for(int i = 1; i < m; i++) {
      for(int j = 1; j < n; j++) {
        if(x[i] == y[j]) {
          c[i][j] = c[i-1][j-1] + 1;
          b[i][j] = 1;
        }
        else if(c[i-1][j] >= c[i][j-1]) {
          c[i][j] = c[i-1][j];
          b[i][j] = 2;
        }
        else {
          c[i][j] = c[i][j-1];
          b[i][j]=3;
        }
      }
    }
    return b;
  }
  public static void lcs(int[][] b, string[] x, int i, int j) {
    if(i == 0|| j == 0) return;
    if(b[i][j] == 1) {
      lcs(b,x,i - 1, j - 1);
      system.out.print(x[i] + " ");
    }
    else if(b[i][j] == 2) {
      lcs(b,x,i - 1, j);
    }
    else lcs(b,x,i, j-1);
  }
  public static void main(string args[]) {
    system.out.println("测试结果:");
    string[] x = {" ","a", "b", "c", "b", "d", "a", "b"};
    string[] y = {" ","b", "d", "c", "a", "b", "a"};
    int[][] b = lcslength(x, y);
    system.out.println("x和y的最长公共子序列是:");
    lcs(b, x, x.length - 1, y.length - 1);
  }
}

运行结果:

Java算法之最长公共子序列问题(LCS)实例分析

更多关于java算法相关内容感兴趣的读者可查看本站专题:《java数据结构与算法教程》、《java操作dom节点技巧总结》、《java文件与目录操作技巧汇总》和《java缓存操作技巧汇总

希望本文所述对大家java程序设计有所帮助。