Go如何实现HTTP请求限流示例
程序员文章站
2022-03-20 15:53:57
在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流!为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常...
在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流!为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常采用的方案之一。
这里为大家推荐一个开源库 但是,如果您想要一些简单的、轻量级的或者只是想要学习的东西,实现自己的中间件来处理速率限制并不困难。今天我们就来聊聊如何实现自己的一个限流中间件
首先我们需要安装一个提供了 token bucket (令牌桶算法)的依赖包,上面提到的toolbooth 的实现也是基于它实现的
$ go get golang.org/x/time/rate
好了我们先看demo代码的实现:
limit.go
package main import ( "net/http" "golang.org/x/time/rate" ) var limiter = rate.newlimiter(2, 5) func limit(next http.handler) http.handler { return http.handlerfunc(func(w http.responsewriter, r *http.request) { if limiter.allow() == false { http.error(w, http.statustext(429), http.statustoomanyrequests) return } next.servehttp(w, r) }) }
main.go
package main import ( "net/http" ) func main() { mux := http.newservemux() mux.handlefunc("/", okhandler) // wrap the servemux with the limit middleware. http.listenandserve(":4000", limit(mux)) } func okhandler(w http.responsewriter, r *http.request) { w.write([]byte("ok")) }
我们看看 rate.newlimiter的源码:
// copyright 2015 the go authors. all rights reserved. // use of this source code is governed by a bsd-style // license that can be found in the license file. // package rate provides a rate limiter. package rate import ( "fmt" "math" "sync" "time" "golang.org/x/net/context" ) // limit defines the maximum frequency of some events. // limit is represented as number of events per second. // a zero limit allows no events. type limit float64 // inf is the infinite rate limit; it allows all events (even if burst is zero). const inf = limit(math.maxfloat64) // every converts a minimum time interval between events to a limit. func every(interval time.duration) limit { if interval <= 0 { return inf } return 1 / limit(interval.seconds()) } // a limiter controls how frequently events are allowed to happen. // it implements a "token bucket" of size b, initially full and refilled // at rate r tokens per second. // informally, in any large enough time interval, the limiter limits the // rate to r tokens per second, with a maximum burst size of b events. // as a special case, if r == inf (the infinite rate), b is ignored. // see https://en.wikipedia.org/wiki/token_bucket for more about token buckets. // // the zero value is a valid limiter, but it will reject all events. // use newlimiter to create non-zero limiters. // // limiter has three main methods, allow, reserve, and wait. // most callers should use wait. // // each of the three methods consumes a single token. // they differ in their behavior when no token is available. // if no token is available, allow returns false. // if no token is available, reserve returns a reservation for a future token // and the amount of time the caller must wait before using it. // if no token is available, wait blocks until one can be obtained // or its associated context.context is canceled. // // the methods allown, reserven, and waitn consume n tokens. type limiter struct { limit limit burst int mu sync.mutex tokens float64 // last is the last time the limiter's tokens field was updated last time.time // lastevent is the latest time of a rate-limited event (past or future) lastevent time.time } // limit returns the maximum overall event rate. func (lim *limiter) limit() limit { lim.mu.lock() defer lim.mu.unlock() return lim.limit } // burst returns the maximum burst size. burst is the maximum number of tokens // that can be consumed in a single call to allow, reserve, or wait, so higher // burst values allow more events to happen at once. // a zero burst allows no events, unless limit == inf. func (lim *limiter) burst() int { return lim.burst } // newlimiter returns a new limiter that allows events up to rate r and permits // bursts of at most b tokens. func newlimiter(r limit, b int) *limiter { return &limiter{ limit: r, burst: b, } } // allow is shorthand for allown(time.now(), 1). func (lim *limiter) allow() bool { return lim.allown(time.now(), 1) } // allown reports whether n events may happen at time now. // use this method if you intend to drop / skip events that exceed the rate limit. // otherwise use reserve or wait. func (lim *limiter) allown(now time.time, n int) bool { return lim.reserven(now, n, 0).ok } // a reservation holds information about events that are permitted by a limiter to happen after a delay. // a reservation may be canceled, which may enable the limiter to permit additional events. type reservation struct { ok bool lim *limiter tokens int timetoact time.time // this is the limit at reservation time, it can change later. limit limit } // ok returns whether the limiter can provide the requested number of tokens // within the maximum wait time. if ok is false, delay returns infduration, and // cancel does nothing. func (r *reservation) ok() bool { return r.ok } // delay is shorthand for delayfrom(time.now()). func (r *reservation) delay() time.duration { return r.delayfrom(time.now()) } // infduration is the duration returned by delay when a reservation is not ok. const infduration = time.duration(1<<63 - 1) // delayfrom returns the duration for which the reservation holder must wait // before taking the reserved action. zero duration means act immediately. // infduration means the limiter cannot grant the tokens requested in this // reservation within the maximum wait time. func (r *reservation) delayfrom(now time.time) time.duration { if !r.ok { return infduration } delay := r.timetoact.sub(now) if delay < 0 { return 0 } return delay } // cancel is shorthand for cancelat(time.now()). func (r *reservation) cancel() { r.cancelat(time.now()) return } // cancelat indicates that the reservation holder will not perform the reserved action // and reverses the effects of this reservation on the rate limit as much as possible, // considering that other reservations may have already been made. func (r *reservation) cancelat(now time.time) { if !r.ok { return } r.lim.mu.lock() defer r.lim.mu.unlock() if r.lim.limit == inf || r.tokens == 0 || r.timetoact.before(now) { return } // calculate tokens to restore // the duration between lim.lastevent and r.timetoact tells us how many tokens were reserved // after r was obtained. these tokens should not be restored. restoretokens := float64(r.tokens) - r.limit.tokensfromduration(r.lim.lastevent.sub(r.timetoact)) if restoretokens <= 0 { return } // advance time to now now, _, tokens := r.lim.advance(now) // calculate new number of tokens tokens += restoretokens if burst := float64(r.lim.burst); tokens > burst { tokens = burst } // update state r.lim.last = now r.lim.tokens = tokens if r.timetoact == r.lim.lastevent { prevevent := r.timetoact.add(r.limit.durationfromtokens(float64(-r.tokens))) if !prevevent.before(now) { r.lim.lastevent = prevevent } } return } // reserve is shorthand for reserven(time.now(), 1). func (lim *limiter) reserve() *reservation { return lim.reserven(time.now(), 1) } // reserven returns a reservation that indicates how long the caller must wait before n events happen. // the limiter takes this reservation into account when allowing future events. // reserven returns false if n exceeds the limiter's burst size. // usage example: // r, ok := lim.reserven(time.now(), 1) // if !ok { // // not allowed to act! did you remember to set lim.burst to be > 0 ? // } // time.sleep(r.delay()) // act() // use this method if you wish to wait and slow down in accordance with the rate limit without dropping events. // if you need to respect a deadline or cancel the delay, use wait instead. // to drop or skip events exceeding rate limit, use allow instead. func (lim *limiter) reserven(now time.time, n int) *reservation { r := lim.reserven(now, n, infduration) return &r } // wait is shorthand for waitn(ctx, 1). func (lim *limiter) wait(ctx context.context) (err error) { return lim.waitn(ctx, 1) } // waitn blocks until lim permits n events to happen. // it returns an error if n exceeds the limiter's burst size, the context is // canceled, or the expected wait time exceeds the context's deadline. func (lim *limiter) waitn(ctx context.context, n int) (err error) { if n > lim.burst { return fmt.errorf("rate: wait(n=%d) exceeds limiter's burst %d", n, lim.burst) } // check if ctx is already cancelled select { case <-ctx.done(): return ctx.err() default: } // determine wait limit now := time.now() waitlimit := infduration if deadline, ok := ctx.deadline(); ok { waitlimit = deadline.sub(now) } // reserve r := lim.reserven(now, n, waitlimit) if !r.ok { return fmt.errorf("rate: wait(n=%d) would exceed context deadline", n) } // wait t := time.newtimer(r.delayfrom(now)) defer t.stop() select { case <-t.c: // we can proceed. return nil case <-ctx.done(): // context was canceled before we could proceed. cancel the // reservation, which may permit other events to proceed sooner. r.cancel() return ctx.err() } } // setlimit is shorthand for setlimitat(time.now(), newlimit). func (lim *limiter) setlimit(newlimit limit) { lim.setlimitat(time.now(), newlimit) } // setlimitat sets a new limit for the limiter. the new limit, and burst, may be violated // or underutilized by those which reserved (using reserve or wait) but did not yet act // before setlimitat was called. func (lim *limiter) setlimitat(now time.time, newlimit limit) { lim.mu.lock() defer lim.mu.unlock() now, _, tokens := lim.advance(now) lim.last = now lim.tokens = tokens lim.limit = newlimit } // reserven is a helper method for allown, reserven, and waitn. // maxfuturereserve specifies the maximum reservation wait duration allowed. // reserven returns reservation, not *reservation, to avoid allocation in allown and waitn. func (lim *limiter) reserven(now time.time, n int, maxfuturereserve time.duration) reservation { lim.mu.lock() defer lim.mu.unlock() if lim.limit == inf { return reservation{ ok: true, lim: lim, tokens: n, timetoact: now, } } now, last, tokens := lim.advance(now) // calculate the remaining number of tokens resulting from the request. tokens -= float64(n) // calculate the wait duration var waitduration time.duration if tokens < 0 { waitduration = lim.limit.durationfromtokens(-tokens) } // decide result ok := n <= lim.burst && waitduration <= maxfuturereserve // prepare reservation r := reservation{ ok: ok, lim: lim, limit: lim.limit, } if ok { r.tokens = n r.timetoact = now.add(waitduration) } // update state if ok { lim.last = now lim.tokens = tokens lim.lastevent = r.timetoact } else { lim.last = last } return r } // advance calculates and returns an updated state for lim resulting from the passage of time. // lim is not changed. func (lim *limiter) advance(now time.time) (newnow time.time, newlast time.time, newtokens float64) { last := lim.last if now.before(last) { last = now } // avoid making delta overflow below when last is very old. maxelapsed := lim.limit.durationfromtokens(float64(lim.burst) - lim.tokens) elapsed := now.sub(last) if elapsed > maxelapsed { elapsed = maxelapsed } // calculate the new number of tokens, due to time that passed. delta := lim.limit.tokensfromduration(elapsed) tokens := lim.tokens + delta if burst := float64(lim.burst); tokens > burst { tokens = burst } return now, last, tokens } // durationfromtokens is a unit conversion function from the number of tokens to the duration // of time it takes to accumulate them at a rate of limit tokens per second. func (limit limit) durationfromtokens(tokens float64) time.duration { seconds := tokens / float64(limit) return time.nanosecond * time.duration(1e9*seconds) } // tokensfromduration is a unit conversion function from a time duration to the number of tokens // which could be accumulated during that duration at a rate of limit tokens per second. func (limit limit) tokensfromduration(d time.duration) float64 { return d.seconds() * float64(limit) }
算法描述:
用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中(每秒会有r个令牌放入桶中),桶中最多可以存放b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃;
实现用户粒度的限流
虽然在某些情况下使用单个全局速率限制器非常有用,但另一种常见情况是基于ip地址或api密钥等标识符为每个用户实施速率限制器。我们将使用ip地址作为标识符。简单实现代码如下:
package main import ( "net/http" "sync" "time" "golang.org/x/time/rate" ) // create a custom visitor struct which holds the rate limiter for each // visitor and the last time that the visitor was seen. type visitor struct { limiter *rate.limiter lastseen time.time } // change the the map to hold values of the type visitor. var visitors = make(map[string]*visitor) var mtx sync.mutex // run a background goroutine to remove old entries from the visitors map. func init() { go cleanupvisitors() } func addvisitor(ip string) *rate.limiter { limiter := rate.newlimiter(2, 5) mtx.lock() // include the current time when creating a new visitor. visitors[ip] = &visitor{limiter, time.now()} mtx.unlock() return limiter } func getvisitor(ip string) *rate.limiter { mtx.lock() v, exists := visitors[ip] if !exists { mtx.unlock() return addvisitor(ip) } // update the last seen time for the visitor. v.lastseen = time.now() mtx.unlock() return v.limiter } // every minute check the map for visitors that haven't been seen for // more than 3 minutes and delete the entries. func cleanupvisitors() { for { time.sleep(time.minute) mtx.lock() for ip, v := range visitors { if time.now().sub(v.lastseen) > 3*time.minute { delete(visitors, ip) } } mtx.unlock() } } func limit(next http.handler) http.handler { return http.handlerfunc(func(w http.responsewriter, r *http.request) { limiter := getvisitor(r.remoteaddr) if limiter.allow() == false { http.error(w, http.statustext(429), http.statustoomanyrequests) return } next.servehttp(w, r) }) }
当然这只是一个简单的实现方案,如果我们要在微服务的api-gateway中去实现限流还是要考虑很多东西的。建议大家可以看看 的源码。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
下一篇: vue之nextTick全面解析