MongoDB使用场景总结
很多人比较关心 mongodb 的适用场景,也有用户在话题里分享了自己的业务场景,比如
案例1
用在应用服务器的日志记录,查找起来比文本灵活,导出也很方便。也是给应用练手,从外围系统开始使用mongodb。
- 用在一些第三方信息的获取或者抓取,因为mongodb的schema-less,所有格式灵活,不用为了各种格式不一样的信息专门设计统一的格式,极大的减少开发的工作。
案例2
mongodb之前有用过,主要用来存储一些监控数据,no schema 对开发人员来说,真的很方便,增加字段不用改表结构,而且学习成本极低。
案例3
使用mongodb做了o2o快递应用,·将送快递骑手、快递商家的信息(包含位置信息)存储在 mongodb,然后通过 mongodb 的地理位置查询,这样很方便的实现了查找附近的商家、骑手等功能,使得快递骑手能就近接单,目前在使用mongodb 上没遇到啥大的问题,官网的文档比较详细,很给力。
经常跟一些同学讨论 mongodb 业务场景时,会听到类似『你这个场景 mysql 也能解决,没必要一定用 mongodb』的声音,的确,并没有某个业务场景必须要使用 mongodb才能解决,但使用 mongodb 通常能让你以更低的成本解决问题(包括学习、开发、运维等成本),下面是 mongodb 的主要特性,大家可以对照自己的业务需求看看,匹配的越多,用 mongodb 就越合适。
mongodb 特性 | 优势 |
---|---|
事务支持 | mongodb 目前只支持单文档事务,需要复杂事务支持的场景暂时不适合 |
灵活的文档模型 | json 格式存储最接近真实对象模型,对开发者友好,方便快速开发迭代 |
高可用复制集 | 满足数据高可靠、服务高可用的需求,运维简单,故障自动切换 |
可扩展分片集群 | 海量数据存储,服务能力水平扩展 |
高性能 | mmapv1、wiredtiger、mongorocks(rocksdb)、in-memory 等多引擎支持满足各种场景需求 |
强大的索引支持 | 地理位置索引可用于构建 各种 o2o 应用、文本索引解决搜索的需求、ttl索引解决历史数据自动过期的需求 |
gridfs | 解决文件存储的需求 |
aggregation & mapreduce | 解决数据分析场景需求,用户可以自己写查询语句或脚本,将请求都分发到 mongodb 上完成 |
从目前阿里云 mongodb 云数据库上的用户看,mongodb 的应用已经渗透到各个领域,比如游戏、物流、电商、内容管理、社交、物联网、视频直播等,以下是几个实际的应用案例。
- 游戏场景,使用 mongodb 存储游戏用户信息,用户的装备、积分等直接以内嵌文档的形式存储,方便查询、更新
- 物流场景,使用 mongodb 存储订单信息,订单状态在运送过程中会不断更新,以 mongodb 内嵌数组的形式来存储,一次查询就能将订单所有的变更读取出来。
- 社交场景,使用 mongodb 存储存储用户信息,以及用户发表的朋友圈信息,通过地理位置索引实现附近的人、地点等功能
- 物联网场景,使用 mongodb 存储所有接入的智能设备信息,以及设备汇报的日志信息,并对这些信息进行多维度的分析
- 视频直播,使用 mongodb 存储用户信息、礼物信息等
- ......
如果你还在为是否应该使用 mongodb,不如来做几个选择题来辅助决策(注:以下内容改编自 mongodb 公司 tj 同学的某次公开技术分享)。
应用特征 | yes / no |
---|---|
应用不需要事务及复杂 join 支持 | 必须 yes |
新应用,需求会变,数据模型无法确定,想快速迭代开发 | ? |
应用需要2000-3000以上的读写qps(更高也可以) | ? |
应用需要tb甚至 pb 级别数据存储 | ? |
应用发展迅速,需要能快速水平扩展 | ? |
应用要求存储的数据不丢失 | ? |
应用需要99.999%高可用 | ? |
应用需要大量的地理位置查询、文本查询 | ? |
如果上述有1个 yes,可以考虑 mongodb,2个及以上的 yes,选择mongodb绝不会后悔。
到此这篇关于mongodb使用场景总结的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持。
下一篇: python实现线性回归的示例代码