欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python人脸识别之微笑检测

程序员文章站 2024-03-30 20:25:09
目录一.实验准备二.图片预处理三.划分数据集四.cnn提取人脸识别笑脸和非笑脸1.创建模型2.归一化处理3.数据增强4.创建网络5.单张图片测试6.摄像头实时测试五.dlib提取人脸特征识别笑脸和非笑...

一.实验准备

环境搭建

pip install tensorflow==1.2.0
pip install keras==2.0.6
pip install dlib==19.6.1
pip install h5py==2.10

如果是新建虚拟环境,还需安装以下包

pip install opencv_python==4.1.2.30
pip install pillow
pip install matplotlib
pip install h5py

使用genki-4k数据集

可从此处下载

二.图片预处理

打开数据集

Python人脸识别之微笑检测

我们需要将人脸检测出来并对图片进行裁剪

代码如下:

import dlib         # 人脸识别的库dlib
import numpy as np  # 数据处理的库numpy
import cv2          # 图像处理的库opencv
import os
 
# dlib预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('d:\\shape_predictor_68_face_landmarks.dat')
 
# 读取图像的路径
path_read = "c:\\users\\28205\\documents\\tencent files\\2820535964\\filerecv\\genki4k\\files"
num=0
for file_name in os.listdir(path_read):
	#aa是图片的全路径
    aa=(path_read +"/"+file_name)
    #读入的图片的路径中含非英文
    img=cv2.imdecode(np.fromfile(aa, dtype=np.uint8), cv2.imread_unchanged)
    #获取图片的宽高
    img_shape=img.shape
    img_height=img_shape[0]
    img_width=img_shape[1]
   
    # 用来存储生成的单张人脸的路径
    path_save="c:\\users\\28205\\documents\\tencent files\\2820535964\\filerecv\\genki4k\\files1" 
    # dlib检测
    dets = detector(img,1)
    print("人脸数:", len(dets))
    for k, d in enumerate(dets):
        if len(dets)>1:
            continue
        num=num+1
        # 计算矩形大小
        # (x,y), (宽度width, 高度height)
        pos_start = tuple([d.left(), d.top()])
        pos_end = tuple([d.right(), d.bottom()])
 
        # 计算矩形框大小
        height = d.bottom()-d.top()
        width = d.right()-d.left()
 
        # 根据人脸大小生成空的图像
        img_blank = np.zeros((height, width, 3), np.uint8)
        for i in range(height):
            if d.top()+i>=img_height:# 防止越界
                continue
            for j in range(width):
                if d.left()+j>=img_width:# 防止越界
                    continue
                img_blank[i][j] = img[d.top()+i][d.left()+j]
        img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.inter_cubic)

        cv2.imencode('.jpg', img_blank)[1].tofile(path_save+"\\"+"file"+str(num)+".jpg") # 正确方法

运行效果如下:

Python人脸识别之微笑检测

共识别出3878张图片。

某些图片没有识别出人脸,所以没有裁剪保存,可以自行添加图片补充。

三.划分数据集

代码:

import os, shutil
# 原始数据集路径
original_dataset_dir = 'c:\\users\\28205\\documents\\tencent files\\2820535964\\filerecv\\genki4k\\files1'

# 新的数据集
base_dir = 'c:\\users\\28205\\documents\\tencent files\\2820535964\\filerecv\\genki4k\\files2'
os.mkdir(base_dir)

# 训练图像、验证图像、测试图像的目录
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

train_cats_dir = os.path.join(train_dir, 'smile')
os.mkdir(train_cats_dir)

train_dogs_dir = os.path.join(train_dir, 'unsmile')
os.mkdir(train_dogs_dir)

validation_cats_dir = os.path.join(validation_dir, 'smile')
os.mkdir(validation_cats_dir)

validation_dogs_dir = os.path.join(validation_dir, 'unsmile')
os.mkdir(validation_dogs_dir)

test_cats_dir = os.path.join(test_dir, 'smile')
os.mkdir(test_cats_dir)

test_dogs_dir = os.path.join(test_dir, 'unsmile')
os.mkdir(test_dogs_dir)

# 复制1000张笑脸图片到train_c_dir
fnames = ['file{}.jpg'.format(i) for i in range(1,900)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

fnames = ['file{}.jpg'.format(i) for i in range(900, 1350)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# copy next 500 cat images to test_cats_dir
fnames = ['file{}.jpg'.format(i) for i in range(1350, 1800)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_cats_dir, fname)
    shutil.copyfile(src, dst)
    
fnames = ['file{}.jpg'.format(i) for i in range(2127,3000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# copy next 500 dog images to validation_dogs_dir
fnames = ['file{}.jpg'.format(i) for i in range(3000,3878)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# copy next 500 dog images to test_dogs_dir
fnames = ['file{}.jpg'.format(i) for i in range(3000,3878)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_dogs_dir, fname)
    shutil.copyfile(src, dst)

运行效果如下:

Python人脸识别之微笑检测

四.cnn提取人脸识别笑脸和非笑脸

1.创建模型

代码:

#创建模型
from keras import layers
from keras import models
model = models.sequential()
model.add(layers.conv2d(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.maxpooling2d((2, 2)))
model.add(layers.conv2d(64, (3, 3), activation='relu'))
model.add(layers.maxpooling2d((2, 2)))
model.add(layers.conv2d(128, (3, 3), activation='relu'))
model.add(layers.maxpooling2d((2, 2)))
model.add(layers.conv2d(128, (3, 3), activation='relu'))
model.add(layers.maxpooling2d((2, 2)))
model.add(layers.flatten())
model.add(layers.dense(512, activation='relu'))
model.add(layers.dense(1, activation='sigmoid'))
model.summary()#查看

运行效果:

Python人脸识别之微笑检测

2.归一化处理

代码:

#归一化
from keras import optimizers
model.compile(loss='binary_crossentropy',
              optimizer=optimizers.rmsprop(lr=1e-4),
              metrics=['acc'])
from keras.preprocessing.image import imagedatagenerator
train_datagen = imagedatagenerator(rescale=1./255)
validation_datagen=imagedatagenerator(rescale=1./255)
test_datagen = imagedatagenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
        # 目标文件目录
        train_dir,
        #所有图片的size必须是150x150
        target_size=(150, 150),
        batch_size=20,
        # since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir,
                                                   target_size=(150, 150),
                                                   batch_size=20,
                                                   class_mode='binary')
for data_batch, labels_batch in train_generator:
    print('data batch shape:', data_batch.shape)
    print('labels batch shape:', labels_batch)
    break
#'smile': 0, 'unsmile': 1

3.数据增强

代码:

#数据增强
datagen = imagedatagenerator(
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=true,
      fill_mode='nearest')
#数据增强后图片变化
import matplotlib.pyplot as plt
# this is module with image preprocessing utilities
from keras.preprocessing import image
fnames = [os.path.join(train_smile_dir, fname) for fname in os.listdir(train_smile_dir)]
img_path = fnames[3]
img = image.load_img(img_path, target_size=(150, 150))
x = image.img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1):
    plt.figure(i)
    imgplot = plt.imshow(image.array_to_img(batch[0]))
    i += 1
    if i % 4 == 0:
        break
plt.show()

运行效果:

Python人脸识别之微笑检测

4.创建网络

代码:

#创建网络
model = models.sequential()
model.add(layers.conv2d(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.maxpooling2d((2, 2)))
model.add(layers.conv2d(64, (3, 3), activation='relu'))
model.add(layers.maxpooling2d((2, 2)))
model.add(layers.conv2d(128, (3, 3), activation='relu'))
model.add(layers.maxpooling2d((2, 2)))
model.add(layers.conv2d(128, (3, 3), activation='relu'))
model.add(layers.maxpooling2d((2, 2)))
model.add(layers.flatten())
model.add(layers.dropout(0.5))
model.add(layers.dense(512, activation='relu'))
model.add(layers.dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
              optimizer=optimizers.rmsprop(lr=1e-4),
              metrics=['acc'])
#归一化处理
train_datagen = imagedatagenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=true,)

test_datagen = imagedatagenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # this is the target directory
        train_dir,
        # all images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=60,  
      validation_data=validation_generator,
      validation_steps=50)
model.save('smileandunsmile1.h5')

#数据增强过后的训练集与验证集的精确度与损失度的图形
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='training acc')
plt.plot(epochs, val_acc, 'b', label='validation acc')
plt.title('training and validation accuracy')
plt.legend()
plt.figure()

plt.plot(epochs, loss, 'bo', label='training loss')
plt.plot(epochs, val_loss, 'b', label='validation loss')
plt.title('training and validation loss')
plt.legend()
plt.show()

运行结果:

速度较慢,要等很久

Python人脸识别之微笑检测

Python人脸识别之微笑检测

5.单张图片测试

代码:

# 单张图片进行判断  是笑脸还是非笑脸
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
#加载模型
model = load_model('smileandunsmile1.h5')
#本地图片路径
img_path='test.jpg'
img = image.load_img(img_path, target_size=(150, 150))

img_tensor = image.img_to_array(img)/255.0
img_tensor = np.expand_dims(img_tensor, axis=0)
prediction =model.predict(img_tensor)  
print(prediction)
if prediction[0][0]>0.5:
    result='非笑脸'
else:
    result='笑脸'
print(result)

Python人脸识别之微笑检测

运行结果:

Python人脸识别之微笑检测

6.摄像头实时测试

代码:

#检测视频或者摄像头中的人脸
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
import dlib
from pil import image
model = load_model('smileandunsmile1.h5')
detector = dlib.get_frontal_face_detector()
video=cv2.videocapture(0)
font = cv2.font_hershey_simplex
def rec(img):
    gray=cv2.cvtcolor(img,cv2.color_bgr2gray)
    dets=detector(gray,1)
    if dets is not none:
        for face in dets:
            left=face.left()
            top=face.top()
            right=face.right()
            bottom=face.bottom()
            cv2.rectangle(img,(left,top),(right,bottom),(0,255,0),2)
            img1=cv2.resize(img[top:bottom,left:right],dsize=(150,150))
            img1=cv2.cvtcolor(img1,cv2.color_bgr2rgb)
            img1 = np.array(img1)/255.
            img_tensor = img1.reshape(-1,150,150,3)
            prediction =model.predict(img_tensor)    
            if prediction[0][0]>0.5:
                result='unsmile'
            else:
                result='smile'
            cv2.puttext(img, result, (left,top), font, 2, (0, 255, 0), 2, cv2.line_aa)
        cv2.imshow('video', img)
while video.isopened():
    res, img_rd = video.read()
    if not res:
        break
    rec(img_rd)
    if cv2.waitkey(1) & 0xff == ord('q'):
        break
video.release()
cv2.destroyallwindows()

运行结果:

Python人脸识别之微笑检测

五.dlib提取人脸特征识别笑脸和非笑脸

代码:

import cv2                     #  图像处理的库 opencv
import dlib                    # 人脸识别的库 dlib
import numpy as np             # 数据处理的库 numpy
class face_emotion():
    def __init__(self):
        self.detector = dlib.get_frontal_face_detector()
        self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
        self.cap = cv2.videocapture(0)
        self.cap.set(3, 480)
        self.cnt = 0  
    def learning_face(self):
        line_brow_x = []
        line_brow_y = []
        while(self.cap.isopened()):

            flag, im_rd = self.cap.read()
            k = cv2.waitkey(1)
            # 取灰度
            img_gray = cv2.cvtcolor(im_rd, cv2.color_rgb2gray)  
            faces = self.detector(img_gray, 0)

            font = cv2.font_hershey_simplex
     
            # 如果检测到人脸
            if(len(faces) != 0):
                
                # 对每个人脸都标出68个特征点
                for i in range(len(faces)):
                    for k, d in enumerate(faces):
                        cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0,0,255))
                        self.face_width = d.right() - d.left()
                        shape = self.predictor(im_rd, d)
                        mouth_width = (shape.part(54).x - shape.part(48).x) / self.face_width 
                        mouth_height = (shape.part(66).y - shape.part(62).y) / self.face_width
                        brow_sum = 0 
                        frown_sum = 0 
                        for j in range(17, 21):
                            brow_sum += (shape.part(j).y - d.top()) + (shape.part(j + 5).y - d.top())
                            frown_sum += shape.part(j + 5).x - shape.part(j).x
                            line_brow_x.append(shape.part(j).x)
                            line_brow_y.append(shape.part(j).y)

                        tempx = np.array(line_brow_x)
                        tempy = np.array(line_brow_y)
                        z1 = np.polyfit(tempx, tempy, 1)  
                        self.brow_k = -round(z1[0], 3) 
                        
                        brow_height = (brow_sum / 10) / self.face_width # 眉毛高度占比
                        brow_width = (frown_sum / 5) / self.face_width  # 眉毛距离占比

                        eye_sum = (shape.part(41).y - shape.part(37).y + shape.part(40).y - shape.part(38).y + 
                                   shape.part(47).y - shape.part(43).y + shape.part(46).y - shape.part(44).y)
                        eye_hight = (eye_sum / 4) / self.face_width
                        if round(mouth_height >= 0.03) and eye_hight<0.56:
                            cv2.puttext(im_rd, "smile", (d.left(), d.bottom() + 20), cv2.font_hershey_simplex, 2,
                                            (0,255,0), 2, 4)

                        if round(mouth_height<0.03) and self.brow_k>-0.3:
                            cv2.puttext(im_rd, "unsmile", (d.left(), d.bottom() + 20), cv2.font_hershey_simplex, 2,
                                        (0,255,0), 2, 4)
                cv2.puttext(im_rd, "face-" + str(len(faces)), (20,50), font, 0.6, (0,0,255), 1, cv2.line_aa)
            else:
                cv2.puttext(im_rd, "no face", (20,50), font, 0.6, (0,0,255), 1, cv2.line_aa)
            im_rd = cv2.puttext(im_rd, "s: screenshot", (20,450), font, 0.6, (255,0,255), 1, cv2.line_aa)
            im_rd = cv2.puttext(im_rd, "q: quit", (20,470), font, 0.6, (255,0,255), 1, cv2.line_aa)
            if (cv2.waitkey(1) & 0xff) == ord('s'):
                self.cnt += 1
                cv2.imwrite("screenshoot" + str(self.cnt) + ".jpg", im_rd)
            # 按下 q 键退出
            if (cv2.waitkey(1)) == ord('q'):
                break
            # 窗口显示
            cv2.imshow("face recognition", im_rd)
        self.cap.release()
        cv2.destroyallwindows()
if __name__ == "__main__":
    my_face = face_emotion()
    my_face.learning_face()

运行结果:

 Python人脸识别之微笑检测

以上就是python人脸识别之微笑检测的详细内容,更多关于python 微笑检测的资料请关注其它相关文章!