python高级详细的教程(讲解python高级用法)
alexmaisiura/python-how-to-reduce-memory-consumption-by-half-by-adding-just-one-line-of-code-56be6443d524
我想与大家分享一些我和我的团队在一个项目中经历的一些问题。在这个项目中,我们必须要存储和处理一个相当大的动态列表。测试人员在测试过程中,抱怨内存不足。下面介绍一个简单的方法,通过添加一行代码来解决这个问题。
图片的结果
下面我来解释一下,它是如何运行的。
首先,我们考虑一个简单的”learning”例子,创建一个dataltem 类,该类是一个人的个人信息,例如姓名,年龄,地址等。
class dataitem(object):def __init__(self, name, age, address):self.name = nameself.age = ageself.address = address
初学者的问题:如何知道一个以上这样的对象占用多少内存?
首先,让我们试着解决一下:
d1 = dataitem("alex", 42, "-")print ("sys.getsizeof(d1):", sys.getsizeof(d1))
我们得到的答案是56bytes,这似乎占用了很少的内存,相当满意喽。那么,我们在尝试另一个包含更多数据的对象例子:
d2 = dataitem("boris", 24, "in the middle of nowhere")print ("sys.getsizeof(d2):", sys.getsizeof(d2))
答案仍然是56bytes,此刻,似乎我们意识到哪里有些不对?并不是所有的事情都第一眼所见那样。
- 直觉不会让我们失望,一切都不是那么简单。python是一种具有动态类型的非常灵活的语言,对于它的工作,它存储了大量的附加数据。它们本身占据了很多。
例如,sys.getsizeof(“”)返回33bytes,是的一个多达33个字节的空行!并且sys.getsizeof(1)返回24bytes,一个整个数字占用24个bytes(我想咨询c语言程序员,远离屏幕,不想在进一步阅读,以免对美观失去信心)。对于更复杂的元素,如字典,sys.getsizeof(.)返回272字节,这是针对空字典的,我不会再继续了,我希望原理是明确的,并且ram的制造商需要出售他们的芯片。
但是,我们回到我们的dataitem类和最初的初学者的疑惑。
这个类,占多少内存?
首先,我们一小写的形式将这个类的完整内容输出:
def dump(obj):for attr in dir(obj):print(" obj.%s = %r" % (attr, getattr(obj, attr)))
这个函数将显示隐藏的“幕后”使所有python函数(类型、继承和其他内容)都能够正常工作的内容。
结果令人印象深刻:
这一切内容占用多少内存?
下边有一个函数可以通过递归的方式,调用getsizeof函数,计算对象实际数据量。
def get_size(obj, seen=none):# from # recursively finds size of objectssize = sys.getsizeof(obj)if seen is none:seen = setobj_id = id(obj)if obj_id in seen:return 0# important mark as seen *before* entering recursion to gracefully handle# self-referential objectsseen.add(obj_id)if isinstance(obj, dict):size += sum([get_size(v, seen) for v in obj.values()])size += sum([get_size(k, seen) for k in obj.keys()])elif hasattr(obj, '__dict__'):size += get_size(obj.__dict__, seen)elif hasattr(obj, '__iter__') and not isinstance(obj, (str, bytes, bytearray)):size += sum([get_size(i, seen) for i in obj])return size
让我们试一试:
d1 = dataitem("alex", 42, "-")print ("get_size(d1):", get_size(d1))d2 = dataitem("boris", 24, "in the middle of nowhere")print ("get_size(d2):", get_size(d2))
我们获得的答案分别为460bytes和484bytes,这结果似乎是真实的。
使用这个函数,你可以进行一系列的实验。例如,我想知道如果dataitem结构放在列表中,数据将占用多少空间。get_size ([d1])函数返回532bytes,显然,这与上面说的460+的开销相同。但是get_size ([d1, d2])返回863bytes,小于以上的460 + 484。get_size ([d1, d2, d1])的结果更有趣——我们得到了871字节,只是稍微多一点,也就是说python足够聪明,不会再次为同一个对象分配内存。
现在,我们来看一看问题的第二部分。
是否存在减少内存开销的可能呢?
是的,可以的。python是一个解释器,我们可以在任何时候扩展我们的类,例如,添加一个新的字段:
d1 = dataitem("alex", 42, "-")print ("get_size(d1):", get_size(d1))d1.weight = 66print ("get_size(d1):", get_size(d1))
非常好,但是如果我们不需要这个功能呢?我们能强制解释器来指定类的列表对象使用__slots__命令:
class dataitem(object):__slots__ = ['name', 'age', 'address']def __init__(self, name, age, address):self.name = nameself.age = ageself.address = address
更多信息可以在文档(rtfm)中找到,其中写到“__ dict__和__weakref__”。使用__dict__节省的空间非常大”。
我们确认:是的,确实很重要,get_size (d1)返回…64字节,而不是460字节,即少7倍。另外,创建对象的速度要快20%(请参阅本文的第一个屏幕截图)。
唉,真正使用如此大的内存增益并不是因为其他开销。通过简单地添加元素,创建一个100,000的数组,并查看内存消耗:
data = for p in range(100000):data.append(dataitem("alex", 42, "middle of nowhere"))snapshot = tracemalloc.take_snapshottop_stats = snapshot.statistics('lineno')total = sum(stat.size for stat in top_stats)print("total allocated size: %.1f mb" % (total / (1024*1024)))
我们不使用__slots__占用内存16.8mb,使用时占用6.9mb。这个操作当然不是最好的,但是确实代码改变的最小的。(not 7 times of course, but it’s not bad at all, considering that the code change was minimal.)
现在的缺点。激活__slots__禁止所有元素的创建,包括__dict__,这意味着,例如,一下代码将结构转换成json将不运行:
def tojson(self): return json.dumps(self.__dict__)
这个问题很容易修复,它是足以产生dict编程方式,通过所有元素的循环:
def tojson(self):data = dictfor var in self.__slots__:data[var] = getattr(self, var)return json.dumps(data)
也不可能动态给这个类添加新类变量,但是在这个例子中,这并不是必需的。
今天的最后一个测试。有趣的是整个程序需要多少内存。添加一个无限循环的程序,以便它不结束,看看windows任务管理器中的内存消耗。
没有 __slots__:
6.9mb 变成 27mb … 好家伙, 毕竟, 我们节省了内存, 27mb 代替 70 ,对于增加一行代码来说并不是一个坏的例子
注意:tracemelc调试库使用了许多附加内存。显然,她为每个创建的对象添加了额外的元素。如果关闭它,总的内存消耗将少得多,截屏显示两个选项:
如果你想节省更多的内存呢?
这可以使用numpy库,它允许您以c样式创建结构,但是在我的例子中,它需要对代码进行更深入的细化,并且第一种方法就足够了。
奇怪的是在habré从来没有详细分析使用__slots__,我希望本文将填补这一空缺。
结论
这篇文章似乎是一个anti-python广告,但并不是。python非常可靠(为了“降低”python程序,您必须非常努力),它是一种易于阅读和方便编写代码的语言。这些优点在很多情况下都大于缺点,但是如果您需要最大的性能和效率,您可以使用像numpy这样的库,它是用c++编写的,它可以很快和高效地与数据一起工作。
推荐阅读
-
python中str函数的用法(str函数的详细用法)
-
python高级详细的教程(讲解python高级用法)
-
python的str方法(讲解python中的str函数用法)
-
Python中 *args,**args的详细用法
-
python核心高级学习总结3-------python实现进程的三种方式及其区别
-
双向链表的增、删、查、改、python实现,超详细讲解
-
测试高级都会的pytest、tox、Jenkins实现python接口自动化持续集成
-
python 高级篇-面向对象-6 子类访问父类的私有属性
-
Python 高级专用类方法的实例详解
-
Python中第三方库Requests库的高级用法详解