lenetas设备(卷积神经网络的代码实现)
程序员文章站
2024-03-26 17:27:41
编码的实现环境是python3.8.3、torch1.5、anaconda3(64-bit)、pycharm2020.1。是《动手学深度学习》(pytorch版)的练习及作业,个别代码有修改,仅供交流...
编码的实现环境是python3.8.3、torch1.5、anaconda3(64-bit)、pycharm2020.1。是《动手学深度学习》(pytorch版)的练习及作业,个别代码有修改,仅供交流学习之用。
# 5.5 卷积神经网络(lenet),即含卷积层的网络。
# (1)lenet模型# lenet分为卷积层块和全连接层块两个部分。
# 卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的空间模式,如线条和物体局部;最大池化层则用来降低卷积层对位置的敏感性。# 卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×5的窗口,并在输出上使用sigmoid激活函数。# 第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。# 卷积层块的两个最大池化层的窗口形状均为2×2,且步幅为2。由于池化窗口与步幅形状相同,池化窗口在输入上每次滑动所覆盖的区域互不重叠。# 卷积层块的输出形状为(批量大小, 通道, 高, 宽)。# 当卷积层块的输出传入全连接层块时,全连接层块会将小批量中每个样本变平(flatten)。也就是说,全连接层的输入形状将变成二维,# 其中第一维是小批量中的样本,第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积。# 全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。
import time
import torch
from torch import nn, optim
import sys
sys.path.append("..")
import d2lzh as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 通过sequential类来实现lenet模型。class lenet(nn.module):
def __init__(self):
super(lenet, self).__init__()
在卷积层块中输入的高和宽在逐层减小。卷积层由于使用高和宽均为5的卷积核,从而将高和宽分别减小4; # 而池化层则将高和宽减半,但通道数则从1增加到16。
self.conv = nn.sequential(
nn.conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
nn.sigmoid(),
nn.maxpool2d(2, 2), # kernel_size, stride
nn.conv2d(6, 16, 5),
nn.sigmoid(),
nn.maxpool2d(2, 2)
)
# 全连接层则逐层减少输出个数,直到变成图像的类别数10。
self.fc = nn.sequential(
nn.linear(16*4*4, 120), nn.sigmoid(), nn.linear(120, 84), nn.sigmoid(), nn.linear(84, 10)
)
def forward(self, img):
feature = self.conv(img)
output = self.fc(feature.view(img.shape[0], -1))
return output
net = lenet()
print(net)
# (2)获取数据和训练模型# 下面我们来实验lenet模型。实验中,使用fashion-mnist作为训练数据集。batch_size = 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
lr, num_epochs = 0.001, 5optimizer = torch.optim.adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)