图像处理计算两个文件夹中对应图片的PSNR/SSIM,计算
用matlbe实现
**
计算多张图片,两个文件夹中对应图片的PSNR/SSIM
**
计算两个文件夹中对应图片的PSNR/SSIM
import os
import numpy as np
import math
from PIL import Image
import time
当中是你的程序
def psnr(img1, img2):
mse = np.mean((img1 / 1. - img2 / 1.) ** 2)
if mse < 1.0e-10:
return 100 * 1.0
return 10 * math.log10(255.0 * 255.0 / mse)
def mse(img1, img2):
mse = np.mean((img1 / 1. - img2 / 1.) ** 2)
return mse
def ssim(y_true, y_pred):
u_true = np.mean(y_true)
u_pred = np.mean(y_pred)
var_true = np.var(y_true)
var_pred = np.var(y_pred)
std_true = np.sqrt(var_true)
std_pred = np.sqrt(var_pred)
c1 = np.square(0.01 * 7)
c2 = np.square(0.03 * 7)
ssim = (2 * u_true * u_pred + c1) * (2 * std_pred * std_true + c2)
denom = (u_true ** 2 + u_pred ** 2 + c1) * (var_pred + var_true + c2)
return ssim / denom
path1 = ‘/’ # 指定输出结果文件夹 #文件夹中的图片应该是0.jpg 1.jpg排列的
path2 = ‘//’ # 指定原图文件夹 #文件夹中的图片应该是0.jpg 1.jpg排列的
f_nums = len(os.listdir(path1))
list_psnr = []
list_ssim = []
list_mse = []
for i in range(0, 4):
img_a = Image.open(path1 + str(i) + '.jpg')
img_b = Image.open(path2 + str(i) + '.jpg')
img_a = np.array(img_a)
img_b = np.array(img_b)
psnr_num = psnr(img_a, img_b)
ssim_num = ssim(img_a, img_b)
mse_num = mse(img_a, img_b)
list_ssim.append(ssim_num)
list_psnr.append(psnr_num)
list_mse.append(mse_num)
print(“平均PSNR:”, np.mean(list_psnr)) # ,list_psnr)
print(“平均SSIM:”, np.mean(list_ssim)) # ,list_ssim)
print(“平均MSE:”, np.mean(list_mse)) # ,list_mse)
上一篇: 几个经典的css技巧
下一篇: LaTex排版的几个技巧