classify CIFAR Image With CNN
程序员文章站
2024-03-26 12:46:05
...
本教程演示如何训练一个简单的卷积神经网络(CNN)来对CIFAR图像进行分类。因为本教程使用Keras Sequential API,所以创建和训练我们的模型只需要几行代码
1.1、加载数据
def loadData():
# 加载数据,cifar数据集 有10个分类,每个分类有6000张彩色图像
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
# 归一化
train_images, test_images = train_images / 255.0, test_images / 255.0
return train_labels, test_images
1.1.1、解决下载cifar数据集比较慢的问题
下载一份cifar数据集放到~\.keras\datasets
目录下,
然后修改cifar10.py
, 点击datasets.cifar10.load_data()
找到cifar10.py文件
@keras_export('keras.datasets.cifar10.load_data')
def load_data():
"""Loads CIFAR10 dataset.
Returns:
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
"""
dirname = 'cifar-10-batches-py'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
path = get_file(
dirname,
origin=origin,
untar=True,
# 此处注释掉,防止验证文件hash
# file_hash= '6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce'
)
......
}
1.2、验证数据
def verifyData(train_images, train_labels):
# 查看前25张图片,验证数据集的正确性
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck']
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
# The CIFAR labels happen to be arrays,
# which is why you need the extra index
plt.xlabel(class_names[train_labels[i][0]])
plt.show()
1.3、创建卷积基
1.3.1、卷积层
# 创建卷积基
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
1.3.2、池化层
model.add(layers.MaxPooling2D((2, 2)))
1.3.3、全连接层
# 全连接层
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
完整的构建模型
train_images, train_labels, test_images, test_labels = loadData()
print(train_images.shape)
# verifyData(train_images, train_labels)
# 创建卷积基
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
# 全连接层
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
# 分类
model.add(layers.Dense(10, activation='softmax')) # 输出层:10个分类, 使用softmax**函数
print(model.summary())
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 30, 30, 32) 896
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 13, 13, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 4, 4, 64) 36928
_________________________________________________________________
flatten (Flatten) (None, 1024) 0
_________________________________________________________________
dense (Dense) (None, 64) 65600
_________________________________________________________________
dense_1 (Dense) (None, 10) 650
=================================================================
Total params: 122,570
Trainable params: 122,570
Non-trainable params: 0
_________________________________________________________________
None
1.4、编译模型
# 编译模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
1.5、训练模型
history = model.fit(train_images, train_labels, epochs=10,
validation_data=(test_images, test_labels))
49472/50000 [============================>.] - ETA: 0s - loss: 0.6245 - accuracy: 0.7791
49728/50000 [============================>.] - ETA: 0s - loss: 0.6242 - accuracy: 0.7792
49984/50000 [============================>.] - ETA: 0s - loss: 0.6248 - accuracy: 0.7789
50000/50000 [==============================] - 12s 249us/sample - loss: 0.6247 - accuracy: 0.7790 - val_loss: 0.8589 - val_accuracy: 0.7174
cudnn未安装
tensorflow.python.framework.errors_impl.UnknownError: Failed to get convolution algorithm.
This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
[[node sequential/conv2d/Conv2D (defined at \setup\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py:1751) ]] [Op:__inference_distributed_function_1055]
1.6、评估模型
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
10000/1 - 1s - loss: 0.7876 - accuracy: 0.7174
上一篇: Seajs 笔记
下一篇: Spark SQL 内置函数和自定义函数