欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

基于“帧差分法”的运动目标检测

程序员文章站 2024-03-26 08:12:35
...

一、原理

    摄像机采集的视频序列具有连续性的特点。如果场景内没有运动目标,则连续帧的变化很微弱,如果存在运动目标,则连续的帧和帧之间会有明显地变化。

    帧间差分法(Temporal Difference)就是借鉴了上述思想。由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧或三帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。

                      基于“帧差分法”的运动目标检测

    两帧差分法的运算过程如图2-2所示。记视频序列中第n帧和第n1帧图像fnfn1,两帧对应像素点的灰度值记为fn(x,y)fn1(x , y),按照式2.13两帧图像对应像素点的灰度值进行相减,并取其绝对值,得到差分图像Dn

                                                                                  基于“帧差分法”的运动目标检测

    设定阈值T,按照式2.14逐个对像素点进行二值化处理,得到二值化图像Rn’。其中,灰度值为255的点即为前景(运动目标)点,灰度值为0的点即为背景点;对图像Rn’进行连通性分析,最终可得到含有完整运动目标的图像Rn

                                         基于“帧差分法”的运动目标检测

二、三帧差分法

    两帧差分法适用于目标运动较为缓慢的场景,当运动较快时,由于目标在相邻帧图像上的位置相差较大,两帧图像相减后并不能得到完整的运动目标,因此,人们在两帧差分法的基础上提出了三帧差分法。

            基于“帧差分法”的运动目标检测

   三帧差分法的运算过程如图2-3所示。记视频序列中第n +1帧、第n帧和n1帧的图像分别为fn+1fnfn1,三帧对应像素点的灰度值记为fn+1(x , y) fn(x , y) fn1(x , y) , 按照式2.13分别得到差分图像Dn+1Dn,对差分图像Dn+1Dn按照式2.15进行与操作,得到图像Dn’,然后再进行阈值处理、连通性分析,最终提取出运动目标。 

                   基于“帧差分法”的运动目标检测

    在帧间差分法中,阈值 T 的选择非常重要。如果阈值T选取的值太小,则无法抑制差分图像中的噪声;如果阈值T选取的值太大,又有可能掩盖差分图像中目标的部分信息;而且固定的阈值T无法适应场景中光线变化等情况。为此,有人提出了在判决条件中加入对整体光照敏感的添加项的方法,将判决条件修改为:

                               基于“帧差分法”的运动目标检测

    其中, N A为待检测区域中像素的总数目,λ为光照的抑制系数,A 可设为整帧图像。添加项基于“帧差分法”的运动目标检测表达了整帧图像中光照的变化情况。如果场景中的光照变化较小,则该项的值趋向于零;如果场景中的光照变化明显,则该项的值明显增大,导致式2.16右侧判决条件自适应地增大,最终的判决结果为没有运动目标,这样就有效地抑制了光线变化对运动目标检测结果的影响。


三、两帧差分和三帧差分的比较

    图 2-5 是采用帧间差分法对自拍序列 lab 序列进行运动目标检测的实验结果,(b)图是采用两帧差分法的检测结果,(c)图是采用三帧差分法的检测结果。lab序列中的目标运动较快,在这种情况下,运动目标在不同图像帧内的位置明显不同,采用两帧差分法检测出的目标会出现“重影”的现象,采用三帧差分法,可以检测出较为完整的运动目标。

                基于“帧差分法”的运动目标检测

    综上所述,帧间差分法的原理简单,计算量小,能够快速检测出场景中的运动目标。但由实验结果可以看出,帧间差分法检测的目标不完整,内部含有“空洞”,这是因为运动目标在相邻帧之间的位置变化缓慢,目标内部在不同帧图像中相重叠的部分很难检测出来。帧间差分法通常不单独用在目标检测中,往往与其它的检测算法结合使用。

   

     


        </div>
            </div>