欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Week1任务3第一节:autograd与逻辑回归

程序员文章站 2024-03-25 21:27:34
...

torch.autograd

autograd-自动求导系统

torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False)

功能:自动求取梯度

  • tensors: 用于求导的张量, 如loss
  • retain_graph: 保存计算图
  • create_graph: 创建导数计算图,用于高阶求导
  • grad_tensors: 多梯度权重

retain_graph

import torch
import matplotlib.pyplot as plt
torch.manual_seed(10)



w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)

y.backward()

# y.backward()

#RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward the first time.

#y.backward(retain_graph=True)

grad_tensors

import torch
torch.manual_seed(10)

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)
b = torch.add(w, 1)

y0 = torch.mul(a, b) #dy0/dw = 5
y1 = torch.add(a, b) #dy1/dw = 2

loss = torch.cat([y0, y1], dim=0) #[y0, y1]

grad_tensors = torch.tensor([1., 2.])
loss.backward(gradient=grad_tensors)

print(w.grad)
#tensor([9.])

torch.autograd.grad(outputs, inputs, grad_inputs=None, retain_graph=None, create_graph=False)

功能:求取梯度

  • outputs:用于求导的张量,如loss, y
  • inputs: 需要梯度的张量, w
  • create_graph: 创建导数计算图,用于高阶求导
  • retain_graph: 保存计算图
  • grad_outputs: 多梯度权重
import torch
torch.manual_seed(10)


x = torch.tensor([3.], requires_grad=True)



y = torch.pow(x, 2)   # y = x **2


grad_1 = torch.autograd.grad(y, x, create_graph=True) #grad_1 = dy/dx = 2x = 2*3 = 6
print(grad_1) # grad_1是元组  梯度 = grad_1[0]
#(tensor([6.], grad_fn=<MulBackward0>),)

grad_2 = torch.autograd.grad(grad_1[0], x) #grad_2 = d(dy/dx)/dx = d(2x)/dx = 2
print(grad_2)
# (tensor([2.]),)

autograd小贴士

1、梯度不自动清零

import torch
torch.manual_seed(10)

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

for i in range(4):
    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    y.backward()
    print(w.grad)

    #tensor([5.])
    #tensor([10.])
    #tensor([15.])
    #tensor([20.])

    w.grad.zero_()

    # tensor([5.])
    # tensor([5.])
    # tensor([5.])
    # tensor([5.])

2、依赖于叶子结点的结点,requires_grad默认为True

import torch
torch.manual_seed(10)

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)


a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)

print(a.requires_grad, b.requires_grad, y.requires_grad)
#True True True

3、叶子节点不执行in_place(在原始内存中改变该数据), 如 add_, +=

import torch
torch.manual_seed(10)

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)


a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
w.add_(1)

y.backward()
# RuntimeError: a leaf Variable that requires grad has been used in an in-place operation.

逻辑回归

逻辑回归是线性的二分类模型
模型表达式:
Week1任务3第一节:autograd与逻辑回归
Week1任务3第一节:autograd与逻辑回归

作业1:逻辑回归模型为什么可以进行二分类:

逻辑回归模型的表达式为因变量 y 等于自变量 x 的线性组合 WX+b再输入到 f(x) = 1/(1+1e-x)函数(即sigmoid函数,也称为Logistic函数)中,sigmoid函数将输入的数据映射到0~1之间,而0~1为概率取值区间,所以逻辑回归模型可以进行二分类。
Week1任务3第一节:autograd与逻辑回归
Week1任务3第一节:autograd与逻辑回归
Week1任务3第一节:autograd与逻辑回归

二元逻辑回归模型的训练过程

机器学习模型训练步骤

Week1任务3第一节:autograd与逻辑回归
步骤1:数据
步骤2:模型
步骤3:损失函数
步骤4:优化器
步骤5:迭代训练

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)

# ===================================== step 1/5 生成数据 =====================================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias
y0 = torch.zeros(sample_nums)
x1 = torch.normal(-mean_value * n_data, 1) + bias
y1 = torch.ones(sample_nums)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)


# ===================================== step 2/5 选择模型 =====================================
class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x

lr_net = LR()  #实例化逻辑回归模型


# ===================================== step 3/5 选择损失函数 =====================================
loss_fn = nn.BCELoss()


# ===================================== step 4/5 选择优化器 =====================================
lr = 0.01 # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)


# ===================================== step 5/5 模型训练 =====================================
for iteration in range(1000):

    #前向传播
    y_pred = lr_net(train_x)

    #计算loss
    loss = loss_fn(y_pred.squeeze(), train_y)

    #反向传播
    loss.backward()

    #更新参数
    optimizer.step()

    #绘图
    if iteration % 990 == 0:
        mask = y_pred.ge(0.5).float().squeeze() # 以0.5为阈值进行分类
        correct = (mask == train_y).sum() # 正确预测的样本个数
        acc = correct.item() / train_y.size(0) # 计算分类准确率

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, "Loss=%.4f" % loss.data.numpy(), fontdict={'size':20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break

作业2

采用代码实现逻辑回归模型的训练,并尝试调整数据生成中的mean_value,将mean_value设置为更小的值,例如1,或者更大的值,例如5,会出现什么情况?
再尝试仅调整bias,将bias调为更大或者负数,模型训练过程是怎么样的?调整mean_value,bias分别截取所训练的逻辑回归模型
mean_value=1.7, bias=1
Week1任务3第一节:autograd与逻辑回归
mean=1,bias=1
Week1任务3第一节:autograd与逻辑回归
mean=5,bias=1
Week1任务3第一节:autograd与逻辑回归
mean=1.7, bias=5
Week1任务3第一节:autograd与逻辑回归
mean=1.7, bias=-1
Week1任务3第一节:autograd与逻辑回归