欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

心脏病预测模型(基于Python的数据挖据)

程序员文章站 2024-03-25 20:30:52
...

作者:Abdullah Alrhmoun

该项目的目标是建立一个模型,该模型可以根据描述疾病的特征组合预测心脏病发生的概率。为了实现这一目标,作者使用了瑞士Cleveland Clinic Foundation收集的数据集。该项目中使用的数据集包含针对心脏病的14个特征。数据集显示不同水平的心脏病存在从1​​到4和0没有疾病。我们有303行人数据,13个连续观察不同的症状。此项目研究了不同的经典机器学习模型,以及它们在疾病风险中的发现。

导入依赖库


#导入依赖库
import pandas as pnd
import numpy as np
from sklearn import preprocessing
from sklearn import neighbors, datasets
from sklearn import cross_validation
from sklearn.linear_model import SGDClassifier
from sklearn import svm
import operator
from sklearn.cross_validation import KFold

import itertools
import numpy as np
import matplotlib.pyplot as plt

from sklearn import metrics
from sklearn.metrics import confusion_matrix

from sklearn import tree
import seaborn as sns

from IPython.display import Image

%matplotlib inline

载入数据

# 添加列名
header_row = ['age','sex','chest_pain','blood pressure','serum_cholestoral','fasting_blood_sugar',\
               'electrocardiographic','max_heart_rate','induced_angina','ST_depression','slope','vessels','thal','diagnosis']

# 载入数据
heart = pnd.read_csv('processed.cleveland.data.csv', names=header_row)
heart[:5]

心脏病预测模型(基于Python的数据挖据)

#查看数据维度
heart.shape
(303, 14)   #303行人的数据,13个连续观察不同症状。

心脏病预测模型(基于Python的数据挖据)

数据探索

# 计算统计值
heart.describe()

心脏病预测模型(基于Python的数据挖据)

计算某个特征的人数

names_descr = dict()
categorical_columns = ["sex", "chest_pain", "fasting_blood_sugar", "electrocardiographic", "induced_angina", "slope", "vessels", \
                       "thal", "diagnosis"]
for c in categorical_columns:
    print  (heart.groupby([c])["age"].count())

使用简单的均值插补方法预处理数据,将缺失的数据更改为平均值

for c in heart.columns[:-1]:
    heart[c] = heart[c].apply(lambda x: heart[heart[c]!='?'][c].astype(float).mean() if x == "?" else x)
    heart[c] = heart[c].astype(float)   

心脏病类型发现

set(heart.loc[:, "diagnosis"].values)

(0 :没有疾病;1,2,3,4 代表不同疾病类型)

计算1,2,3,4 levels 之间的相似性

vecs_1 = heart[heart["diagnosis"] == 1 ].median().values[:-2]
vecs_2 = heart[heart["diagnosis"] == 2 ].median().values[:-2]
vecs_3 = heart[heart["diagnosis"] == 3 ].median().values[:-2]
vecs_4 = heart[heart["diagnosis"] == 4 ].median().values[:-2]
print ("Similarity between type 1 and type 2 is ", np.linalg.norm(vecs_1-vecs_2))
print ("Similarity between type 1 and type 3 is ", np.linalg.norm(vecs_1-vecs_3))
print ("Similarity between type 1 and type 4 is ", np.linalg.norm(vecs_1-vecs_4))
print ("Similarity between type 2 and type 3 is ", np.linalg.norm(vecs_2-vecs_3))
print ("Similarity between type 2 and type 4 is ", np.linalg.norm(vecs_2-vecs_4))
print ("Similarity between type 3 and type 4 is ", np.linalg.norm(vecs_3-vecs_4))
sim = {"(1,2)": np.linalg.norm(vecs_1-vecs_2), \
       "(1,3)": np.linalg.norm(vecs_1-vecs_3),\
       "(1,4)": np.linalg.norm(vecs_1-vecs_4),\
       "(2,3)": np.linalg.norm(vecs_2-vecs_3),\
       "(2,4)": np.linalg.norm(vecs_2-vecs_4),\
       "(3,4)": np.linalg.norm(vecs_3-vecs_4)    
      }
# 根据相近值排序
sorted_sim = sorted(sim.items(), key=operator.itemgetter(1))
sorted_sim

可以分别使用每个特征的值来比较心脏病的类型

heart_d = heart[heart["diagnosis"] >= 1 ]
heart_d[:5]

心脏病预测模型(基于Python的数据挖据)

数据预处理

# if "diagnosis" == 0, 没有疾病
# if "diagnosis" >= 1, 有疾病
heart.loc[:, "diag_int"] = heart.loc[:, "diagnosis"].apply(lambda x: 1 if x >= 1 else 0)
#数据标准化
preprocessing.Normalizer().fit_transform(heart)
#划分数据集
heart_train, heart_test, goal_train, goal_test = cross_validation.train_test_split(heart.loc[:,'age':'thal'], \
                                                 heart.loc[:,'diag_int'], test_size=0.33, random_state=0)  
#计算相关系数
corr = heart.corr()
heart.corr()

心脏病预测模型(基于Python的数据挖据)

#绘制热图
cmap = sns.diverging_palette(250, 10, n=3, as_cmap=True)

def magnify():
    return [dict(selector="th",
                 props=[("font-size", "7pt")]),
            dict(selector="td",
                 props=[('padding', "0em 0em")]),
            dict(selector="th:hover",
                 props=[("font-size", "12pt")]),
            dict(selector="tr:hover td:hover",
                 props=[('max-width', '200px'),
                        ('font-size', '12pt')])
]

corr.style.background_gradient(cmap, axis=1)\
    .set_properties(**{'max-width': '80px', 'font-size': '10pt'})\
    .set_caption("Hover to magify")\
    .set_precision(2)\
    .set_table_styles(magnify())

心脏病预测模型(基于Python的数据挖据)

探索可视化

#年龄与血压关系
import matplotlib.pyplot as plt
%matplotlib inline

plt.xlabel("age")
plt.ylabel("blood pressure")

# define title
plt.title("Relationship between age and blood pressure")

# plot
plt.scatter(heart['age'], heart['blood pressure'])
plt.show()

心脏病预测模型(基于Python的数据挖据)

 

建立训练模型并评估LSS参数

# add parameters for grid search
loss = ["hinge", "log"]
penalty = ["l1", "l2"]
alpha = [0.1, 0.05, 0.01]
n_iter = [500, 1000]

# build the models with different parameters and select the best combination for the highest Accuracy
best_score = 0
best_param = (0,0,0,0)
for l in loss:
    for p in penalty:
        for a in alpha:
            for n in n_iter:
                print("Parameters for model", (l,p,a,n))
                lss = SGDClassifier(loss=l, penalty=p, alpha=a, n_iter=n)
                lss.fit(heart_train, goal_train)
                print("Linear regression SGD Cross-Validation scores:")
                scores = cross_validation.cross_val_score(lss, heart.loc[:,'age':'thal'], heart.loc[:,'diag_int'], cv=10)
                print (scores)
                print("Mean Linear regression SGD Cross-Validation score = ", np.mean(scores))
                
                if np.mean(scores) > best_score:
                    best_score = np.mean(scores)
                    best_param = (l,p,a,n)
                    
    
print("The best parameters for model are ", best_param)
print("The Cross-Validation score = ", best_score)
lss_best = SGDClassifier(alpha=0.05, fit_intercept=True, loss='log', n_iter=1000,
penalty='l1')
lss_best.fit(heart_train, goal_train)
print("Linear regression SGD Test score:")
print(lss_best.score(heart_test, goal_test))   

模型验证

# Compute confusion matrix
cnf_matrix = confusion_matrix(goal_test, lss_best.predict(heart_test))
np.set_printoptions(precision=2)

# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=["Heart disease", "No heart disease"],
                      title='Confusion matrix, without normalization')
plt.show()

心脏病预测模型(基于Python的数据挖据)

心脏病预测模型(基于Python的数据挖据)

 

参考:

https://github.com/Sonali1197/Heart-disease-prediction-model