欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Harris角点检测

程序员文章站 2024-03-25 19:38:46
...

利用Harris角点检测对图像进行特征提取。cornerHarris(gray_src, dst, blockSize, KSize, k, BORDER_DEFAULT);只是输出一幅角点灰度图像,还需要将其灰度归一化到0-255区间,在利用convertScaleAbs(norm_dst, nnn);进行增强;之后通过灰度阈值获取图像中的角点,并通过红色圆圈标记出来。

#include "opencv2/opencv.hpp"
#include<iostream>

using namespace cv;
using namespace std;

Mat src, gray_src;
int thresh = 130;
int max_count = 255;
const char*output_title = "HarrisCornerDetection Result";
void Harris_Demo(int, void*);

int main()
{
	
	src = imread("F:\\Opencv_2018\\tongliya.jpg");
	if (src.empty())
	{
		printf("can't open this picture!");
		return -1; // 默认返回-1为出现错误
	}
	namedWindow("input",CV_WINDOW_AUTOSIZE);
	imshow("input",src);
	
	namedWindow(output_title, CV_WINDOW_AUTOSIZE);
	cvtColor(src, gray_src, COLOR_BGR2GRAY);
	// 创建滑动条
	createTrackbar("Threshold:", output_title, &thresh, max_count, Harris_Demo);
	Harris_Demo(0, 0);




	waitKey(0);
	return 0;
}

void Harris_Demo(int , void*)
{
	Mat dst, norm_dst, nnn;
	dst = Mat::zeros(gray_src.size(),CV_32FC1);

	int blockSize = 2;
	int KSize = 3;
	double k = 0.04;
	cornerHarris(gray_src, dst, blockSize, KSize, k, BORDER_DEFAULT);
	normalize(dst, norm_dst, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
	convertScaleAbs(norm_dst, nnn);
	Mat ResultImg = src.clone();

	for (int row = 0; row < ResultImg.rows; row++)
	{
		uchar* currentRow = nnn.ptr(row);
		for (int col = 0; col < ResultImg.cols; col++)
		{
			int value = (int)*currentRow;
			if (value > thresh)
			{
				circle(ResultImg, Point(col,row),2, Scalar(0,0,255),2,8,0);

			}
			currentRow++;

		}
		


	}
	imshow(output_title, ResultImg);


}
相关标签: Harris角点检测