Harris角点检测
程序员文章站
2024-03-25 19:38:46
...
利用Harris角点检测对图像进行特征提取。cornerHarris(gray_src, dst, blockSize, KSize, k, BORDER_DEFAULT);只是输出一幅角点灰度图像,还需要将其灰度归一化到0-255区间,在利用convertScaleAbs(norm_dst, nnn);进行增强;之后通过灰度阈值获取图像中的角点,并通过红色圆圈标记出来。
#include "opencv2/opencv.hpp"
#include<iostream>
using namespace cv;
using namespace std;
Mat src, gray_src;
int thresh = 130;
int max_count = 255;
const char*output_title = "HarrisCornerDetection Result";
void Harris_Demo(int, void*);
int main()
{
src = imread("F:\\Opencv_2018\\tongliya.jpg");
if (src.empty())
{
printf("can't open this picture!");
return -1; // 默认返回-1为出现错误
}
namedWindow("input",CV_WINDOW_AUTOSIZE);
imshow("input",src);
namedWindow(output_title, CV_WINDOW_AUTOSIZE);
cvtColor(src, gray_src, COLOR_BGR2GRAY);
// 创建滑动条
createTrackbar("Threshold:", output_title, &thresh, max_count, Harris_Demo);
Harris_Demo(0, 0);
waitKey(0);
return 0;
}
void Harris_Demo(int , void*)
{
Mat dst, norm_dst, nnn;
dst = Mat::zeros(gray_src.size(),CV_32FC1);
int blockSize = 2;
int KSize = 3;
double k = 0.04;
cornerHarris(gray_src, dst, blockSize, KSize, k, BORDER_DEFAULT);
normalize(dst, norm_dst, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
convertScaleAbs(norm_dst, nnn);
Mat ResultImg = src.clone();
for (int row = 0; row < ResultImg.rows; row++)
{
uchar* currentRow = nnn.ptr(row);
for (int col = 0; col < ResultImg.cols; col++)
{
int value = (int)*currentRow;
if (value > thresh)
{
circle(ResultImg, Point(col,row),2, Scalar(0,0,255),2,8,0);
}
currentRow++;
}
}
imshow(output_title, ResultImg);
}