欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Java 线程池原理和队列详解 博客分类: JAVA拾遗 Java 线程池原理和队列详解 

程序员文章站 2024-03-25 17:50:58
...

Java 线程池原理和队列详解

 
来源:
参考:

一、Executor任务提交接口与Executors工具类

Executor框架同java.util.concurrent.Executor 接口在Java 5中被引入。Executor框架是一个根据一组执行策略调用,调度,执行和控制的异步任务的框架。Executor存在的目的是提供一种将“任务提交”与”任务如何运行”分离开来的机制。定义如下:

public interface Executor {  
    void execute(Runnable command);  
} 

虽然只有一个方法,但是却为灵活且强大的异步任务执行框架提供了基础。它提供了一种标准的方法将任务的提交过程与执行过程解耦开来,并用Runnable来表示任务。

那么我们怎么得到Executor对象呢?这就是接下来要介绍的Exectors类了。 Executors为Executor,ExecutorService,ScheduledExecutorService,ThreadFactory和Callable类提供了一些工具方法,类似于集合中的Collections类的功能。Executors方便的创建线程池。

- 1、newCachedThreadPool

该线程池比较适合没有固定大小并且比较快速就能完成的小任务,它将为每个任务创建一个线程。那这样子它与直接创建线程对象(new Thread())有什么区别呢?看到它的第三个参数60L和第四个参数TimeUnit.SECONDS了吗?好处就在于60秒内能够重用已创建的线程。

下面是Executors中的newCachedThreadPool()的源代码:

public static ExecutorService newCachedThreadPool() {  
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>());  
    } 

- 2、 newFixedThreadPool

使用的Thread对象的数量是有限的,如果提交的任务数量大于限制的最大线程数,那么这些任务将排队,然后当有一个线程的任务结束之后,将会根据调度策略继续等待执行下一个任务。

下面是Executors中的newFixedThreadPool()的源代码: 

public static ExecutorService newFixedThreadPool(int nThreads) {  
      return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());  
  } 

- 3、newSingleThreadExecutor

线程数量为1的FixedThreadPool,如果提交了多个任务,那么这些任务将会排队,每个任务都会在下一个任务开始之前运行结束,所有的任务将会使用相同的线程。下面是Executors中的newSingleThreadExecutor()的源代码:  

public static ExecutorService newSingleThreadExecutor() {  
        return new FinalizableDelegatedExecutorService  
            (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()));  
    } 

- 4、newScheduledThreadPool

创建一个固定长度的线程池,而且以延迟或定时的方式来执行任务。 通过如上配置的线程池的创建方法源代码,我们可以发现:   1> 除了CachedThreadPool使用的是直接提交策略的缓冲队列以外,其余两个用的采用的都是*缓冲队列,也就说,FixedThreadPool和SingleThreadExecutor创建的线程数量就不会超过 corePoolSize。   2> 三个线程池采用的ThreadPoolExecutor构造方法都是同一个,使用的都是默认的ThreadFactory和handler:

private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();  
 
 public ThreadPoolExecutor(int corePoolSize,  
                     int maximumPoolSize,  
                     long keepAliveTime,  
                     TimeUnit unit,  
                     BlockingQueue<Runnable> workQueue) {  
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,  
        Executors.defaultThreadFactory(), defaultHandler);  
} 

也就说三个线程池创建的线程对象都是同组,优先权等级为正常的Thread.NORM_PRIORITY(5)的非守护线程,使用的被拒绝任务处理方式是直接抛出异常的AbortPolicy策略(前面有介绍)。

二、ExecutorService任务周期管理接口

Executor的实现通常都会创建线程来执行任务,但是使用异步方式来执行任务时,由于之前提交任务的状态不是立即可见的,所以如果要关闭应用程序时,就需要将受影响的任务状态反馈给应用程序。

为了解决执行服务的生命周期问题,Executor扩展了EecutorService接口,添加了一些用于生命周期管理的方法。如下:

public interface ExecutorService extends Executor {  
    void shutdown();  
    List<Runnable> shutdownNow();  
    boolean isShutdown();  
    boolean isTerminated();  
    boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;  
    // 省略部分方法  
}

三、ThreadPoolExecutor线程池实现类

先来看一下这个类中定义的重要变量,如下:

private final BlockingQueue<Runnable> workQueue;              // 阻塞队列  
private final ReentrantLock mainLock = new ReentrantLock();   // 互斥锁  
private final HashSet<Worker> workers = new HashSet<Worker>();// 线程集合.一个Worker对应一个线程  
private final Condition termination = mainLock.newCondition();// 终止条件  
private int largestPoolSize;           // 线程池中线程数量曾经达到过的最大值。  
private long completedTaskCount;       // 已完成任务数量  
private volatile ThreadFactory threadFactory;     // ThreadFactory对象,用于创建线程。  
private volatile RejectedExecutionHandler handler;// 拒绝策略的处理句柄  
private volatile long keepAliveTime;   // 线程池维护线程所允许的空闲时间  
private volatile boolean allowCoreThreadTimeOut;  
private volatile int corePoolSize;     // 线程池维护线程的最小数量,哪怕是空闲的  
private volatile int maximumPoolSize;  // 线程池维护的最大线程数量  

其中有几个重要的规则需要说明一下:

- 1、 corePoolSize与maximumPoolSize

由于ThreadPoolExecutor 将根据 corePoolSize和 maximumPoolSize设置的边界自动调整池大小,当新任务在方法 execute(java.lang.Runnable) 中提交时:

如果运行的线程少于 corePoolSize,则创建新线程来处理请求,即使其他辅助线程是空闲的;

如果运行的线程等于或多于 corePoolSize 而少于 maximumPoolSize,

队列已满:创建新的线程去处理请求 队列未满:将任务加入队列 如果运行的线程多于corePoolSize 并且等于maximumPoolSize,

队列已满:通过handler所指定的策略来处理新请求; 队列未满:将任务加入队列 如果将 maximumPoolSize 设置为基本的*值(如 Integer.MAX_VALUE),则并发任务的数量没有限制。

处理任务的优先级为:

核心线程corePoolSize > 任务队列workQueue > 最大线程maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。 当池中的线程数大于corePoolSize的时候,多余的线程会等待keepAliveTime长的时间,如果无请求可处理就自行销毁。 - 2、workQueue 线程池所使用的缓冲队列

该缓冲队列的长度决定了能够缓冲的最大数量,缓冲队列有三种通用策略:

- 1、 直接提交。

     工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。   在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。   此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求* maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许*线程具有增长的可能性;   

- 2、 *队列

  使用*队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙时,新任务将在队列中等待。这样,创建的线程数量就不会超过 corePoolSize。(因此,maximumPoolSize 的值也就无效了。)

当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用*队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许*线程具有增长的可能性;   

- 3、 有界队列

当使用有限的 maximumPoolSizes 时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。

队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量.

举例:

例子一:使用直接提交策略,也即SynchronousQueue。

首先SynchronousQueue是*的,也就是说他存储任务的能力是没有限制的,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走后才能继续添加。在这里不是核心线程便是新创建的线程,但是我们试想一样下,下面的场景。

我们使用一下参数构造ThreadPoolExecutor:

new ThreadPoolExecutor(   
                2, 3, 30, TimeUnit.SECONDS,    
                new  SynchronousQueue<Runnable>(),    
                new RecorderThreadFactory("CookieRecorderPool"),    
                new ThreadPoolExecutor.CallerRunsPolicy()); 

假设当前核心线程已经有2个正在运行.

此时来了一个任务(A),根据前面介绍的“如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。”,所以A被添加到queue中。

又来了一个任务(B),且核心2个线程还没有忙完。接下来首先尝试1中描述,但是由于使用的SynchronousQueue,所以一定无法加入进去。

此时便满足了上面提到的“如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。”,所以必然会新建一个线程来运行这个任务。

但是如果这三个任务都还没完成,继续来了一个任务,queue中无法插入(任务A还在queue中),而线程数达到了maximumPoolSize,所以只好执行异常策略了。 为了避免这种情况:,所以在使用SynchronousQueue通常要求maximumPoolSize是*的(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。

如果你的任务A1,A2有内部关联,A1需要先运行,那么先提交A1,再提交A2,当使用SynchronousQueue我们可以保证,A1必定先被执行,在A1么有被执行前,A2不可能添加入queue中

例子二:使用*队列策略,即LinkedBlockingQueue

拿newFixedThreadPool来说,根据前文提到的规则:

如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。 那么当任务继续增加,会发生什么呢?

如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。 OK,此时任务变加入队列之中了,那什么时候才会添加新线程呢?

如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。 *队列不会出现无法加入队列的情况。不像SynchronousQueue那样有其自身的特点,对于*队列来说,总是可以加入的(资源耗尽,当然另当别论)。

换句说,永远也不会触发产生新的线程!线程数一直都是corePoolSize大小。忙完当前的线程,就从队列中拿任务开始运行。如果任务运行的时长比较长,而添加任务的速度远远超过处理任务的速度,任务队列就会疯长,任务内存很快就会爆掉

例子三:有界队列,使用ArrayBlockingQueue。

这个是最为复杂的使用,所以JDK不推荐使用也有些道理。与上面的相比,最大的特点便是可以防止资源耗尽的情况发生。

举例来说,请看如下构造方法:

new ThreadPoolExecutor(  
            2, 4, 30, TimeUnit.SECONDS,   
            new ArrayBlockingQueue<Runnable>(2),   
            new RecorderThreadFactory("CookieRecorderPool"),   
            new ThreadPoolExecutor.CallerRunsPolicy());  

假设,所有的任务都永远无法执行完。

对于首先来的A,B来说直接运行 如果来了C,D,他们会被放到queu中 如果接下来再来E,F,则增加线程运行E,F。 但是如果再来任务,队列无法再接受了,线程数也到达最大的限制了,所以就会使用拒绝策略来处理。 - 3、ThreadFactory

使用 ThreadFactory 创建新线程。如果没有另外说明,则在同一个 ThreadGroup 中一律使用 Executors.defaultThreadFactory() 创建线程,并且这些线程具有相同的 NORM_PRIORITY 优先级和非守护进程状态。

通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态等等。如果从 newThread 返回 null 时 ThreadFactory 未能创建线程,则执行程序将继续运行,但不能执行任何任务。

public interface ThreadFactory {  
    Thread newThread(Runnable r);  
}

而构造方法中的threadFactory对象,是通过 Executors.defaultThreadFactory()返回的。Executors.java中的defaultThreadFactory()源码如下:

public static ThreadFactory defaultThreadFactory() {  
     return new DefaultThreadFactory();  
 } 

在DefaultThreadFactory类中实现了ThreadFactory接口并对其中定义的方法进行了实现,如下:

static class DefaultThreadFactory implements ThreadFactory {  
    private static final AtomicInteger poolNumber = new AtomicInteger(1);  
    private final ThreadGroup group;  
    private final AtomicInteger threadNumber = new AtomicInteger(1);  
    private final String namePrefix;  
 
    DefaultThreadFactory() {  
        SecurityManager s = System.getSecurityManager();  
        group = (s != null) ? s.getThreadGroup() :  Thread.currentThread().getThreadGroup();  
        namePrefix = "pool-" +  poolNumber.getAndIncrement() +  "-thread-";  
    }  
    // 为线程池创建新的任务执行线程  
    public Thread newThread(Runnable r) {  
        // 线程对应的任务是Runnable对象r  
        Thread t = new Thread(group, r,namePrefix + threadNumber.getAndIncrement(), 0);  
        // 设为非守护线程  
        if (t.isDaemon())  
            t.setDaemon(false);  
        // 将优先级设为Thread.NORM_PRIORITY  
        if (t.getPriority() != Thread.NORM_PRIORITY)  
            t.setPriority(Thread.NORM_PRIORITY);  
        return t;  
    }  
}  

- 4、RejectedExecutionHandler

当Executor已经关闭(即执行了executorService.shutdown()方法后),并且Executor将有限边界用于最大线程和工作队列容量,且已经饱和时,在方法execute()中提交的新任务将被拒绝.   在以上述情况下,execute 方法将调用其 RejectedExecutionHandler 的 RejectedExecutionHandler.rejectedExecution(java.lang.Runnable, java.util.concurrent.ThreadPoolExecutor) 方法。下面提供了四种预定义的处理程序策略:

在默认的 ThreadPoolExecutor.AbortPolicy 处理程序遭到拒绝将抛出运行时 RejectedExecutionException;

在 ThreadPoolExecutor.CallerRunsPolicy线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度

在 ThreadPoolExecutor.DiscardPolicy 不能执行的任务将被删除;

在 ThreadPoolExecutor.DiscardOldestPolicy 如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)。 线程池默认会采用的是defaultHandler策略。首先看defaultHandler的定义:

private static final RejectedExecutionHandler defaultHandler = new AbortPolicy(); // 使用默认的拒绝策略  
 
public static class AbortPolicy implements RejectedExecutionHandler {  
    public AbortPolicy() { }  
    // 抛出异常  
    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {  
        throw new RejectedExecutionException("Task " + r.toString() +  " rejected from " +  e.toString());  
    }  
} 

看一下其他拒绝策略的具体实现。

class MyRunnable implements Runnable {  
    private String name;  
    public MyRunnable(String name) {  
        this.name = name;  
    }  
    @Override  
    public void run() {  
        try {  
            System.out.println(this.name + " is running.");  
            Thread.sleep(100);  
        } catch (Exception e) {  
            e.printStackTrace();  
        }  
    }  
}

举例:

如上是一个测试任务的例子,下面编写4个测试用例来测试。

- 1. DiscardPolicy 示例

public class DiscardPolicyDemo {  
 
    private static final int THREADS_SIZE = 1;  
    private static final int CAPACITY = 1;  
 
    public static void main(String[] args) throws Exception {  
 
        // 创建线程池。线程池的"最大池大小"和"核心池大小"都为1(THREADS_SIZE),"线程池"的阻塞队列容量为1(CAPACITY)。  
        ThreadPoolExecutor pool = new ThreadPoolExecutor(THREADS_SIZE, THREADS_SIZE, 0, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(CAPACITY));  
        // 设置线程池的拒绝策略为"丢弃"  
        pool.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardPolicy());  
 
        // 新建10个任务,并将它们添加到线程池中。  
        for (int i = 0; i < 10; i++) {  
            Runnable myrun = new MyRunnable("task-"+i);  
            pool.execute(myrun);  
        }  
        // 关闭线程池  
        pool.shutdown();  
    }  
}  

线程池pool的”最大池大小”和”核心池大小”都为1(THREADS_SIZE),这意味着”线程池能同时运行的任务数量最大只能是1”。 线程池pool的阻塞队列是ArrayBlockingQueue,ArrayBlockingQueue是一个有界的阻塞队列,ArrayBlockingQueue的容量为1。这也意味着线程池的阻塞队列只能有一个线程池阻塞等待。 根据”“中分析的execute()代码可知:线程池*运行了2个任务。第1个任务直接放到Worker中,通过线程去执行;第2个任务放到阻塞队列中等待。其他的任务都被丢弃了!

- 2. DiscardOldestPolicy 示例

public class DiscardOldestPolicyDemo {  
 
    private static final int THREADS_SIZE = 1;  
    private static final int CAPACITY = 1;  
 
    public static void main(String[] args) throws Exception {  
 
        // 创建线程池。线程池的"最大池大小"和"核心池大小"都为1(THREADS_SIZE),"线程池"的阻塞队列容量为1(CAPACITY)。  
        ThreadPoolExecutor pool = new ThreadPoolExecutor(THREADS_SIZE, THREADS_SIZE, 0, TimeUnit.SECONDS,  
                new ArrayBlockingQueue<Runnable>(CAPACITY));  
        // 设置线程池的拒绝策略为"DiscardOldestPolicy"  
        pool.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardOldestPolicy());  
 
        // 新建10个任务,并将它们添加到线程池中。  
        for (int i = 0; i < 10; i++) {  
            Runnable myrun = new MyRunnable("task-"+i);  
            pool.execute(myrun);  
        }  
        // 关闭线程池  
        pool.shutdown();  
    }  
}  

运行结果:

task-0 is running.
task-9 is running.

将”线程池的拒绝策略”由DiscardPolicy修改为DiscardOldestPolicy之后,当有任务添加到线程池被拒绝时,线程池会丢弃阻塞队列中末尾的任务,然后将被拒绝的任务添加到末尾。

- 3. AbortPolicy 示例

public class AbortPolicyDemo {  
 
    private static final int THREADS_SIZE = 1;  
    private static final int CAPACITY = 1;  
 
    public static void main(String[] args) throws Exception {  
 
        // 创建线程池。线程池的"最大池大小"和"核心池大小"都为1(THREADS_SIZE),"线程池"的阻塞队列容量为1(CAPACITY)。  
        ThreadPoolExecutor pool = new ThreadPoolExecutor(THREADS_SIZE, THREADS_SIZE, 0, TimeUnit.SECONDS,  
                new ArrayBlockingQueue<Runnable>(CAPACITY));  
        // 设置线程池的拒绝策略为"抛出异常"  
        pool.setRejectedExecutionHandler(new ThreadPoolExecutor.AbortPolicy());  
 
        try {  
 
            // 新建10个任务,并将它们添加到线程池中。  
            for (int i = 0; i < 10; i++) {  
                Runnable myrun = new MyRunnable("task-"+i);  
                pool.execute(myrun);  
            }  
        } catch (RejectedExecutionException e) {  
            e.printStackTrace();  
            // 关闭线程池  
            pool.shutdown();  
        }  
    }  
}  

(某一次)运行结果:

java.util.concurrent.RejectedExecutionException
    at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:1774)
    at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:768)
    at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:656)
    at AbortPolicyDemo.main(AbortPolicyDemo.java:27)
task-0 is running.
task-1 is running.

将”线程池的拒绝策略”由DiscardPolicy修改为AbortPolicy之后,当有任务添加到线程池被拒绝时,会抛出RejectedExecutionException。

- 4. CallerRunsPolicy 示例

public class CallerRunsPolicyDemo {  
 
    private static final int THREADS_SIZE = 1;  
    private static final int CAPACITY = 1;  
 
    public static void main(String[] args) throws Exception {  
 
        // 创建线程池。线程池的"最大池大小"和"核心池大小"都为1(THREADS_SIZE),"线程池"的阻塞队列容量为1(CAPACITY)。  
        ThreadPoolExecutor pool = new ThreadPoolExecutor(THREADS_SIZE, THREADS_SIZE, 0, TimeUnit.SECONDS,  
                new ArrayBlockingQueue<Runnable>(CAPACITY));  
        // 设置线程池的拒绝策略为"CallerRunsPolicy"  
        pool.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());  
 
        // 新建10个任务,并将它们添加到线程池中。  
        for (int i = 0; i < 10; i++) {  
            Runnable myrun = new MyRunnable("task-"+i);  
            pool.execute(myrun);  
        }  
 
        // 关闭线程池  
        pool.shutdown();  
    }  
}  

(某一次)运行结果:

task-2 is running.
task-3 is running.
task-4 is running.
task-5 is running.
task-6 is running.
task-7 is running.
task-8 is running.
task-9 is running.
task-0 is running.
task-1 is running.

将”线程池的拒绝策略”由DiscardPolicy修改为CallerRunsPolicy之后,当有任务添加到线程池被拒绝时,线程池会将被拒绝的任务添加到”线程池正在运行的线程”中取运行。

  • Java 线程池原理和队列详解
            
    
    博客分类: JAVA拾遗 Java 线程池原理和队列详解 
  • 大小: 322.3 KB