欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PCL点云分割---平面模型分割

程序员文章站 2024-03-25 10:41:42
...

PCL点云分割---平面模型分割

适用对象

适用于存在大面积平面的点云分割,比如墙和地面等。
该算法能够拟合平面点云,配合点云滤波—提取子集滤波器可以实现去掉或者保留平面点云的功能。

工作原理

该算法基于Ransac做平面拟合,Ransac为了找到点云的平面,不停的改变平面模型(ax+by+cz+d=0)的参数:a, b, c和d。经过多次调参后,在一定程度上找出一组参数使得这个模型拟合最多的点。这个程度由distance threshold来定义。distance threshold实质上指定了在平面拟合中平面可以包罗的点的厚度阈值

PCL核心代码实现

pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);	//定义模型系数
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);					//定义点索引

pcl::SACSegmentation<pcl::PointXYZ> seg;								//创建分割对象
//可选的设置,设置分割是否优化系数
seg.setOptimizeCoefficients (true);
//必须要设置的内容
seg.setModelType (pcl::SACMODEL_PLANE);									//设置分割对象所选用的模型类型
seg.setMethodType (pcl::SAC_RANSAC);									//设置算法类型
seg.setDistanceThreshold (0.01);										//本算法中唯一一个参数,设置距离阈值

seg.setInputCloud (cloud);												//设置输入点云
seg.segment (*inliers, *coefficients);									//开始执行分割算法

完整代码:

#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>

int
 main (int argc, char** argv)
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);

  // Fill in the cloud data
  cloud->width  = 15;
  cloud->height = 1;
  cloud->points.resize (cloud->width * cloud->height);

  // Generate the data
  for (size_t i = 0; i < cloud->points.size (); ++i)
  {
    cloud->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].z = 1.0;
  }

  // Set a few outliers
  cloud->points[0].z = 2.0;
  cloud->points[3].z = -2.0;
  cloud->points[6].z = 4.0;

  std::cerr << "Point cloud data: " << cloud->points.size () << " points" << std::endl;
  for (size_t i = 0; i < cloud->points.size (); ++i)
    std::cerr << "    " << cloud->points[i].x << " "
                        << cloud->points[i].y << " "
                        << cloud->points[i].z << std::endl;

  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  // Create the segmentation object
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  // Optional
  seg.setOptimizeCoefficients (true);
  // Mandatory
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setDistanceThreshold (0.01);

  seg.setInputCloud (cloud);
  seg.segment (*inliers, *coefficients);

  if (inliers->indices.size () == 0)
  {
    PCL_ERROR ("Could not estimate a planar model for the given dataset.");
    return (-1);
  }

  std::cerr << "Model coefficients: " << coefficients->values[0] << " " 
                                      << coefficients->values[1] << " "
                                      << coefficients->values[2] << " " 
                                      << coefficients->values[3] << std::endl;

  std::cerr << "Model inliers: " << inliers->indices.size () << std::endl;
  for (size_t i = 0; i < inliers->indices.size (); ++i)
    std::cerr << inliers->indices[i] << "    " << cloud->points[inliers->indices[i]].x << " "
                                               << cloud->points[inliers->indices[i]].y << " "
                                               << cloud->points[inliers->indices[i]].z << std::endl;

  return (0);
}

参考资料

Plane model segmentation