【OpenCV】矩阵掩模操作
程序员文章站
2024-03-25 10:23:18
...
矩阵掩模操作是指根据一个掩码矩阵(也称为内核kernel)重新计算图像中每个像素的值。掩码可以控制改变相邻像素和当前像素对新像素值的影响,从而产生新的图像像素。
本节通过图像锐化来比较图像指针运算与掩模操作的运行结果,观察运行时间的差异。
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
using namespace std;
using namespace cv;
void sharpen(const Mat& myImage, Mat& Result);
int main(int argc, char* grav[])
{
char* filename = "../data/fruits.jpg";
Mat src, dst0, dst1;
src = imread(filename, IMREAD_COLOR);
if (src.empty())
{
// cerr(无缓冲标准错误):没有缓冲,发送给它的内容立即被输出
cerr << "Can't open image" << endl;
return -1;
}
namedWindow("Input", WINDOW_AUTOSIZE);
namedWindow("Output", WINDOW_AUTOSIZE);
imshow("Input", src); // 显示原图像
double t = (double)getTickCount(); // 计算hand-coded方法的时间
sharpen(src, dst0);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "Hand written function time passed in seconds:" << t << endl;
imshow("Output", dst0);
Mat kernel = (Mat_<char>(3, 3) << 0,-1,0,-1,5,-1,0,-1,0);
t = (double)getTickCount(); // 计算矩阵掩模方法的时间
filter2D(src, dst1, src.depth(), kernel); // 滤波filter2D函数
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "Built-in filter2D time passed in seconds:" << t << endl;
imshow("Output", dst1);
waitKey(0);
return 0;
}
void sharpen(const Mat& myImage, Mat& Result)
{
CV_Assert(myImage.depth() == CV_8U); // 只允许uchar型图像
const int nChannels = myImage.channels();
Result.create(myImage.size(), myImage.type());
for (int j = 1; j < myImage.rows - 1; ++j) // 遍历图像
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j);
const uchar* next = myImage.ptr<uchar>(j + 1);
uchar* output = Result.ptr<uchar>(j);
for (int i = nChannels; i < nChannels*(myImage.cols - 1); ++i)
{
// saturate_cast原理: if(data<0) data = 0; if (data>255) data = 255
*output++ = saturate_cast<uchar>(5 * current[i] // 防止数据溢出
- current[i - nChannels] - current[i + nChannels] - previous[i] - next[i]);
}
}
Result.row(0).setTo(Scalar(0)); // 图像四边未处理像素设为0
Result.row(Result.rows - 1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols - 1).setTo(Scalar(0));
}
运行结果
Hand written function time passed in seconds:0.0174564
Built-in filter2D time passed in seconds:0.00683035