欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【图神经网络】ChebyNet-切比雪夫多项式近似图卷积核

程序员文章站 2024-03-25 09:22:34
...

本文为图神经网络学习笔记,讲解 ChebyNet-切比雪夫多项式近似图卷积核。欢迎在评论区与我交流????

ChebyNet 简介

见【图卷积网络】。

ChebyNet 实现

对图的邻接矩阵进行归一化处理得到拉普拉斯矩阵。归一化方法有:
{ L = D − A L s y m = D − 1 / 2 L D − 1 / 2 L r w = D − 1 L \left\{ \begin{array}{rcl} L=D-A \\ L^{sym}=D^{-1/2}LD^{-1/2}\\ L^{rw}=D^{-1}L \end{array} \right. L=DALsym=D1/2LD1/2Lrw=D1L
根据得到的归一化拉普拉斯矩阵计算:
L ^ = 2 λ m a x L − I N \hat{L}=\frac{2}{\lambda_{max}}L-I_N L^=λmax2LIN
Re-scaled 特征值对角矩阵,将其变换到 [ − 1 , 1 ] [-1,1] [1,1] 之间:

num_nodes = x.shape[0]
norm_edge_index, norm_edge_weight = chebnet_norm_edge(edge_index, num_nodes, edge_weight, lambda_max, normalization_type=normalization_type)                                            

利用切比雪夫多项式的迭代定义递推计算高阶项(节省大量运算),最后输出模型结果,即多项式和 y = σ ( ∑ k = 0 K θ k T k ( L ^ ) ( x ) ) y=\sigma(\sum\limits_{k=0}^K\theta_kT_k(\hat{L})(x)) y=σ(k=0KθkTk(L^)(x)) 计算损失或评估模型效果:

T0_x = x
T1_x = x
out = tf.matmul(T0_x, kernel[0]) # 两个矩阵相乘 

if K > 1:
    T1_x = aggregate_neighbors(x, norm_edge_index, norm_edge_weight, gcn_mapper, sum_reducer, identity_updater)
    out += tf.matmul(T1_x, kernel[1])

# T_{n+1}=2T_n-T_{n-1}
for i in range(2, K):
    T2_x = aggregate_neighbors(T1_x, norm_edge_index, norm_edge_weight, gcn_mapper, sum_reducer, identity_updater)  # L^T_{k-1}(L^)
    T2_x = 2.0 * T2_x - T0_x
    out += tf.matmul(T2_x, kernel[i])

    T0_x, T1_x = T1_x, T2_x

if bias is not None:
    out += bias

if activation is not None:
    out += activation(out)

return out

模型构建

本教程使用的核心库是 tf_geometric,我们用它来进行图数据导入、图数据预处理及图神经网络构建。ChebNet 的具体实现已经在上面详细介绍,LaplacianMaxEigenvalue 获取拉普拉斯矩阵的最大特征值。后面使用 keras.metrics.Accuracy 评估模型性能:

import os

os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tf_geometric.layers.conv.chebnet import chebNet
from tf_geometric.datasets.cora import CoraDataset
from tf_geometric.utils.graph_utils import LaplacianMaxEigenvalue
from tqdm import tqdm

使用 tf_geometric 自带的图结构数据接口加载 Cora 数据集:

# 加载 Cora 数据集
graph, (train_index, valid_index, test_index) = CoraDataset().load_data()

获取图拉普拉斯矩阵的最大特征值:

# 获取 lambda_max
graph_lambda_max = LaplacianMaxEigenvalue(graph.x, graph.edge_index, graph.edge_weight)

定义模型,引入 keras.layers 中的 Dropout 层随机关闭神经元缓解过拟合。由于 Dropout 层在训练和预测阶段的状态不同,通过参数 training 来决定是否需要 Dropout 发挥作用:

model = chebNet(64, K=3, lambda_max=graph_lambda_max()
fc = tf.keras.Sequential([
    keras.layers.Dropout(0.5), # Dropout 层随机关闭神经元缓解过拟合
    keras.layers.Dense(num_classes)])

def forward(graph, training=False):
    h = model([graph.x, graph.edge_index, graph.edge_weight])
    h = fc(h, training=training) # 通过参数 training 来决定是否需要 Dropout 发挥作用
    return h

ChebyNet 训练

模型的训练与其他基于 Tensorflow 框架的模型训练基本一致,主要步骤有定义优化器,计算误差与梯度,反向传播等,然后分别计算验证集和测试集上的准确率:

# 定义优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-2)

best_test_acc = tmp_valid_acc = 0
for step in tqdm(range(1, 101)):
    with tf.GradientTape() as tape:
      	# 前向传播
        logits = forward(graph, training=True)
        # 计算损失
        loss = compute_loss(logits, train_index, tape.watched_variables())

    vars = tape.watched_variables()
    grads = tape.gradient(loss, vars) # 计算梯度
    optimizer.apply_gradients(zip(grads, vars)) # 梯度下降优化

    valid_acc = evaluate(valid_index) # 计算验证集
    test_acc = evaluate(test_index) # 计算测试集
    if test_acc > best_test_acc:
        best_test_acc = test_acc
        tmp_valid_acc = valid_acc
    print("step = {}\tloss = {}\tvalid_acc = {}\tbest_test_acc = {}".format(step, loss, tmp_valid_acc, best_test_acc))

用交叉熵损失函数计算模型损失。注意在加载 Cora 数据集时,返回值是整个图数据以及相应的 train_indexvalid_indextest_index。TAGCN 在训练时输入整个Graph,计算损失时通过 train_index 计算模型在训练集上的迭代损失。因此,此时传入的 mask_indextrain_index。由于是多分类任务,需要将节点的标签转换为 one-hot 向量以便与模型输出的结果维度对应。由于图神经模型在小数据集上很容易过拟合,所以这里用 L 2 L_2 L2 正则化缓解过拟合:

def compute_loss(logits, mask_index, vars):
    masked_logits = tf.gather(logits, mask_index) # 前向传播(预测)的结果,取训练数据部分
    masked_labels = tf.gather(graph.y, mask_index) # 真实结果,取训练数据部分
    losses = tf.nn.softmax_cross_entropy_with_logits(
        logits=masked_logits, # 预测结果
        labels=tf.one_hot(masked_labels, depth=num_classes) # 真实结果,即标签
    )
		# 用 L_2 正则化缓解过拟合
    kernel_vals = [var for var in vars if "kernel" in var.name]
    l2_losses = [tf.nn.l2_loss(kernel_var) for kernel_var in kernel_vals]

    # reduce_mean 计算张量的平均值;tf.add_n 列表对应元素相加
    return tf.reduce_mean(losses) + tf.add_n(l2_losses) * 5e-4

ChebyNet 评估

评估模型性能时只需传入 valid_masktest_mask,通过 tf.gather 函数可以拿出验证集或测试集在模型上的预测结果与真实标签,用 keras自带的 keras.metrics.Accuracy 计算准确率:

def evaluate(mask):
    logits = forward(graph) # 前向传播结果
    logits = tf.nn.log_softmax(logits, axis=-1) # 假设函数处理
    masked_logits = tf.gather(logits, mask) # 预测结果
    masked_labels = tf.gather(graph.y, mask) # 真实标签

    # 返回预测结果向量最大值的索引
    y_pred = tf.argmax(masked_logits, axis=-1, output_type=tf.int32)

    accuracy_m = keras.metrics.Accuracy()
    accuracy_m.update_state(masked_labels, y_pred)
    return accuracy_m.result().numpy() # 准确度结果转换为 numpy 返回

运行结果

 0%|          | 0/100 [00:00<?, ?it/s]step = 1	loss = 1.9817407131195068	valid_acc = 0.7139999866485596	best_test_acc = 0.7089999914169312
  2%|▏         | 2/100 [00:01<00:55,  1.76it/s]step = 2	loss = 1.6069653034210205	valid_acc = 0.75	best_test_acc = 0.7409999966621399
step = 3	loss = 1.2625869512557983	valid_acc = 0.7720000147819519	best_test_acc = 0.7699999809265137
  4%|▍         | 4/100 [00:01<00:48,  1.98it/s]step = 4	loss = 0.9443040490150452	valid_acc = 0.7760000228881836	best_test_acc = 0.7749999761581421
  5%|▌         | 5/100 [00:02<00:46,  2.06it/s]step = 5	loss = 0.7023431062698364	valid_acc = 0.7760000228881836	best_test_acc = 0.7770000100135803
  ...
96	loss = 0.0799005851149559	valid_acc = 0.7940000295639038	best_test_acc = 0.8080000281333923
 96%|█████████▌| 96/100 [00:43<00:01,  2.31it/s]step = 97	loss = 0.0768655389547348	valid_acc = 0.7940000295639038	best_test_acc = 0.8080000281333923
 97%|█████████▋| 97/100 [00:43<00:01,  2.33it/s]step = 98	loss = 0.0834992527961731	valid_acc = 0.7940000295639038	best_test_acc = 0.8080000281333923
 99%|█████████▉| 99/100 [00:44<00:00,  2.34it/s]step = 99	loss = 0.07315651327371597	valid_acc = 0.7940000295639038	best_test_acc = 0.8080000281333923
100%|██████████| 100/100 [00:44<00:00,  2.23it/s]
step = 100	loss = 0.07698118686676025	valid_acc = 0.7940000295639038	best_test_acc = 0.8080000281333923

完整代码见【demo_chebynet.py】。

有帮助的话点个赞加关注吧 ????

参考