欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

对数据的归一化

程序员文章站 2024-03-25 09:13:28
...
import numpy as np
import matplotlib.pyplot as plt
def Normalization1(x):
    '''归一化(0~1)'''
    '''x_=(x−x_min)/(x_max−x_min)'''
    return [(float(i)-min(x))/float(max(x)-min(x)) for i in x]
def Normalization2(x):
    '''归一化(-1~1)'''
    '''x_=(x−x_mean)/(x_max−x_min)'''
    return [(float(i)-np.mean(x))/(max(x)-min(x)) for i in x]
def z_score(x):
    '''标准化(μ=0,σ=1)'''
    '''x∗=(x−μ)/σ'''
    x_mean=np.mean(x)
    s2=sum([(i-np.mean(x))*(i-np.mean(x)) for i in x])/len(x)
    return [(i-x_mean)/s2 for i in x]

l=[-10, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 30]
l1=[]
# for i in l:
#     i+=2
#     l1.append(i)
# print(l1)
cs=[]
for i in l:
    c=l.count(i)
    cs.append(c)
print(cs)
n=Normalization2(l)
z=z_score(l)
print(n)
print(z)
plt.plot(l,cs)
plt.plot(z,cs)
plt.show()

 

相关标签: 归一化