欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

keras 乱七八糟

程序员文章站 2024-03-25 08:04:58
...

keras保存模型:model.save(mp)

根据已有的模型预测

    from keras.preprocessing import image
    model = load_model('ResNet50.h5')
    img = image.load_img('0.jpg', target_size=(64, 64))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)

    predictions = model.predict(x)
    print(predictions[0])
    print(np.argmax(predictions[0]))

画图:其中h位h = model.fit(...)

    # plt.figure(figsize=[10, 4])
    # plt.subplot(1, 2, 1)
    # plt.plot(h.history['loss'])
    # plt.plot(h.history['val_loss'])
    # plt.legend(['loss', 'val_loss'])
    # plt.ylabel('loss')
    # plt.xlabel('epoch')
    #
    # plt.subplot(1, 2, 2)
    # plt.plot(h.history['acc'])
    # plt.plot(h.history['val_acc'])
    # plt.legend(['acc', 'val_acc'])
    # plt.ylabel('acc')
    # plt.xlabel('epoch')

jupyter 中的训练图片展示

import random
import matplotlib.pyplot as plt

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

plt.figure(figsize=(12,10))
for i in range(12):
    random_index = random.randint(0,n-1)
    plt.subplot(3,4,1+i)
    plt.imshow(X[random_index])
    plt.title(['dog','cat'][Y[random_index]])

tensorflow和Keras 转换RGB到BGR的实现代码:来自https://blog.csdn.net/Will_Ye/article/details/88062567

import numpy as np
import tensorflow as tf

vgg_mean = [103.939, 116.779, 123.68]

self.tfx = tf.placeholder(tf.float32, [None, 224, 224, 3])
self.tfy = tf.placeholder(tf.float32, [None, 1])

# Convert RGB to BGR
red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=self.tfx * 255.0)
bgr = tf.concat(axis=3, values=[
	blue - self.vgg_mean[0],
    green - self.vgg_mean[1],
    red - self.vgg_mean[2],
])




import cv2
from keras import datasets
from keras.applications.vgg16 import VGG16
from keras.datasets import mnist
import numpy as np


(X_train,y_train),(X_test,y_test) = mnist.load_data()
 
#转成VGG16需要的格式
#RGB ->> bgr格式
X_train = [cv2.cvtColor(cv2.resize(i,(ishape,ishape)), cv2.COLOR_GRAY2BGR) for i in X_train]
X_train = np.concatenate([arr[np.newaxis] for arr in X_train]).astype('float32')
 
X_test  = [cv2.cvtColor(cv2.resize(i,(ishape,ishape)), cv2.COLOR_GRAY2BGR) for i in X_test ]
X_test  = np.concatenate([arr[np.newaxis] for arr in X_test] ).astype('float32')