opencv计算机视觉学习笔记八
转载自https://blog.csdn.net/retacn_yue/article/details/53726481
第九章 基于opencv的神经网络简介
1 人工神精网络ann
2 人工神精网络的结构
输入层
网络的输入数目
如动物有体重,长度,牙齿三个属性,网络则需要三个输入节点
中间层
输出层
与定义的类别数相同,如定义了猪,狗,猫,鸡,则输出层的数目为4
创建ANN常见规则
神经元数 位于输入/输出层之间, 接近输出层
较小的输入,神经元数=(输入+输出)/3*2
学习算法:
监督学习
非监督学习
强化学习
3 opencv中的ann
示例代码如下:
import cv2
import numpy as np
创建ann,MLP 是multilayer perceptron 感知器
ann = cv2.ml.ANN_MLP_create()
设置拓扑结构,通过数组来定义各层大小,分别对应输入/隐藏/输出
ann.setLayerSizes(np.array([9, 5, 9], dtype=np.uint8))
采用反向传播方式,还有一种方式ANN_MLP_RPROP,只有在有监督学习中才可以设置
ann.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
有点类似于向量机svm的 train函数
ann.train(np.array([[1.2, 1.3, 1.9, 2.2, 2.3, 2.9, 3.0, 3.2, 3.3]], dtype=np.float32), # 对应9个输入数据
cv2.ml.ROW_SAMPLE, # 如果提供以下几个参数就是有监督学习
np.array([[0, 0, 0, 0, 0, 1, 0, 0, 0]], dtype=np.float32)) # 输出层大小为9
print(ann.predict(np.array([[1.4, 1.5, 1.2, 2., 2.5, 2.8, 3., 3.1, 3.8]], dtype=np.float32)))
输出结果为:
(5.0, #类标签
array([[-0.06419383, -0.13360272, -0.1681568 , -0.18708915, 0.0970564 , #输入数据属于每个类的概率
0.89237726, 0.05093023, 0.17537238, 0.13388439]], dtype=float32))
基于ann的动物分类
示例代码如下:
import cv2
import numpy as np
from random import randint
创建ann
animals_net = cv2.ml.ANN_MLP_create()
设定train函数为弹性反向传播
animals_net.setTrainMethod(cv2.ml.ANN_MLP_RPROP | cv2.ml.ANN_MLP_UPDATE_WEIGHTS)
animals_net.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM)
设置拓扑结构,通过数组来定义各层大小,分别对应输入/隐藏/输出
animals_net.setLayerSizes(np.array([3, 8, 4]))
指定ann的终止条件
animals_net.setTermCriteria((cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1))
“””
输入数组
weight, length, teeth
“””
“””
输出数组 狗 膺 海豚 龙
dog,eagle,dolphin and dragon
“”“
def dog_sample():
return [randint(5, 20), 1, randint(38, 42)]
def dog_class():
return [1, 0, 0, 0]
def eagle_sample():
return [randint(3, 13), 3, 0]
def eagle_class():
return [0, 1, 0, 0]
def dolphin_sample():
return [randint(30, 190), randint(5, 15), randint(80, 100)]
def dolphin_class():
return [0, 0, 1, 0]
def dragon_sample():
return [randint(1200, 1800), randint(15, 40), randint(160, 180)]
def dragon_class():
return [0, 0, 0, 1]
“”“
创建四类动物数据,每类5000个样本
SAMPLE = 5000
for x in range(0, SAMPLE):
print(“samples %d/%d” % (x, SAMPLE))
animals_net.train(np.array([dog_sample()], dtype=np.float32),
cv2.ml.ROW_SAMPLE,
np.array([dog_class()], dtype=np.float32))
animals_net.train(np.array([eagle_sample()], dtype=np.float32),
cv2.ml.ROW_SAMPLE,
np.array([eagle_class()], dtype=np.float32))
animals_net.train(np.array([dolphin_sample()], dtype=np.float32),
cv2.ml.ROW_SAMPLE,
np.array([dolphin_class()], dtype=np.float32))
animals_net.train(np.array([dragon_sample()], dtype=np.float32),
cv2.ml.ROW_SAMPLE,
np.array([dragon_class()], dtype=np.float32))
print(animals_net.predict(np.array([dog_sample()], dtype=np.float32)))
print(animals_net.predict(np.array([eagle_sample()], dtype=np.float32)))
print(animals_net.predict(np.array([dolphin_sample()], dtype=np.float32)))
print(animals_net.predict(np.array([dragon_sample()], dtype=np.float32)))
输出结果
(1.0, array([[ 1.49817729, 1.60551953, -1.56444871, -0.04313202]], dtype=float32))
(1.0, array([[ 1.49817729, 1.60551953, -1.56444871, -0.04313202]], dtype=float32))
(1.0, array([[ 1.49817729, 1.60551953, -1.56444871, -0.04313202]], dtype=float32))
(1.0, array([[ 1.42620921, 1.5461663 , -1.4097836 , 0.07277301]], dtype=float32))
“”“
训练周期
def record(sample, classification):
return (np.array([sample], dtype=np.float32), np.array([classification], dtype=np.float32))
records = []
RECORDS = 5000
for x in range(0, RECORDS):
records.append(record(dog_sample(), dog_class()))
records.append(record(eagle_sample(), eagle_class()))
records.append(record(dolphin_sample(), dolphin_class()))
records.append(record(dragon_sample(), dragon_class()))
EPOCHS = 2
for e in range(0, EPOCHS):
print(“Epoch %d:” % e)
for t, c in records:
animals_net.train(t, cv2.ml.ROW_SAMPLE, c)
TESTS = 100
dog_results = 0
for x in range(0, TESTS):
clas = int(animals_net.predict(np.array([dog_sample()], dtype=np.float32))[0])
print(“class: %d” % clas)
if (clas) == 0:
dog_results += 1
eagle_results = 0
for x in range(0, TESTS):
clas = int(animals_net.predict(np.array([eagle_sample()], dtype=np.float32))[0])
print(“class: %d” % clas)
if (clas) == 1:
eagle_results += 1
dolphin_results = 0
for x in range(0, TESTS):
clas = int(animals_net.predict(np.array([dolphin_sample()], dtype=np.float32))[0])
print(“class: %d” % clas)
if (clas) == 2:
dolphin_results += 1
dragon_results = 0
for x in range(0, TESTS):
clas = int(animals_net.predict(np.array([dragon_sample()], dtype=np.float32))[0])
print(“class: %d” % clas)
if (clas) == 3:
dragon_results += 1
print(“Dog accuracy: %f%%” % (dog_results))
print(“condor accuracy: %f%%” % (eagle_results))
print(“dolphin accuracy: %f%%” % (dolphin_results))
print(“dragon accuracy: %f%%” % (dragon_results))
输出结果如下:
Dog accuracy: 0.000000%
condor accuracy: 0.000000%
dolphin accuracy: 0.000000%
dragon accuracy: 50.000000%
4 用人工神精网络进行手写数字识别
手写数字数据库,下载地址
http://yann.lecun.com/exdb/mnist
迷你库
!/usr/bin/env python
-- coding: utf-8 --
@Time : 2016/12/17 10:44
@Author : Retacn
@Site : opencv ann 手写数字识别
@File : digits_ann.py
@Software: PyCharm
author = “retacn”
copyright = “property ofmankind.”
license = “CN”
version = “0.0.1”
maintainer = “retacn”
email = “[email protected]”
status = “Development”
import cv2
import pickle
import numpy as np
import gzip
def load_data():
mnist = gzip.open(‘./data/mnist.pkl.gz’, ‘rb’)
training_data, classification_data, test_data = pickle.load(mnist,encoding=’latin1’)
mnist.close()
return (training_data, classification_data, test_data)
def wrap_data():
tr_d, va_d, te_d = load_data()
training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
training_results = [vectorized_result(y) for y in tr_d[1]]
training_data = zip(training_inputs, training_results)
validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
validation_data = zip(validation_inputs,va_d[1])
test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
test_data = zip(test_inputs, te_d[1])
return (training_data, validation_data, test_data)
给出类标签,创建10个元素的0数组
参数j表示要置1的位置
def vectorized_result(j):
e= np.zeros((10, 1))
e[j] = 1.0
return e
创建ann
def create_ANN(hidden=20):
ann = cv2.ml.ANN_MLP_create()
#设置各层大小
ann.setLayerSizes(np.array([784, hidden, 10]))
#采用反向传播方式
ann.setTrainMethod(cv2.ml.ANN_MLP_RPROP)
ann.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM)
#指定ann的终止条件
ann.setTermCriteria((cv2.TERM_CRITERIA_EPS | cv2.TermCriteria_COUNT, 20,1))
return ann
训练函数
def train(ann, samples=10000, epochs=1):
tr, val, test = wrap_data()
for x in range(epochs):
counter = 0
for img in tr:
if (counter > samples):
break
if (counter % 1000 == 0):
print("Epoch %d: Trained%d/%d " % (x, counter, samples))
counter += 1
data, digit = img
# ravel()将多维数组拉平为一维
ann.train(np.array([data.ravel()], dtype=np.float32),
cv2.ml.ROW_SAMPLE,
np.array([digit.ravel()],dtype=np.float32))
print('Epoch %d complete' % x)
return ann, test
检查神精网络工作
def test(ann, test_data):
sample = np.array(test_data[0][0].ravel(), dtype=np.float32).reshape(28,28)
cv2.imshow(“sample”, sample)
cv2.waitKey()
print(ann.predict(np.array([test_data[0][0].ravel()],dtype=np.float32)))
def predict(ann, sample):
resized = sample.copy()
rows, cols = resized.shape
if (rows != 28 or cols != 28) and rows * cols > 0:
resized = cv2.resize(resized, (28, 28), interpolation=cv2.INTER_CUBIC)
return ann.predict(np.array([resized.ravel()], dtype=np.float32))
if name == “main“:
pass
print(vectorized_result(2))
!/usr/bin/env python
-- coding: utf-8 --
@Time : 2016/12/17 11:35
@Author : Retacn
@Site : 识别手写数字图像
@File : digits_image.py
@Software: PyCharm
author = “retacn”
copyright = “property ofmankind.”
license = “CN”
version = “0.0.1”
maintainer = “retacn”
email = “[email protected]”
status = “Development”
import cv2
import numpy as np
import Nine.digits_ann as ANN
确定矩形是否完全包含在另一个中
def inside(r1, r2):
x1, y1, w1, h1 = r1
x2, y2, w2, h2 = r2
if (x1 > x2) and (y1 > y2) and (x1 + w1 < x2 + w2) and (y1 + h1< y2 + h2):
return True
else:
return False
取得数字周围矩形,将其转换为正方形
def wrap_digit(rect):
x, y, w, h = rect
padding = 5
hcenter = x + w / 2
vcenter = y + h / 2
if (h > w):
w = h
x = hcenter - (w / 2)
else:
h = w
y = vcenter - (h / 2)
return (int(x - padding), int(y - padding), int(w + padding), int(h +padding))
创建神经网络,中间层为58,训练50000个样本
ann, test_data =ANN.train(ANN.create_ANN(100), 50000,30)
font = cv2.FONT_HERSHEY_SIMPLEX
读入图像
PATH = ‘./image/numbers.jpg’
PATH = ‘./image/MNISTsamples.png’
img = cv2.imread(PATH,cv2.IMREAD_UNCHANGED)
更换颜色空间
bw = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
高斯模糊
bw = cv2.GaussianBlur(bw, (7, 7), 0)
设置阈值
ret, thbw = cv2.threshold(bw, 127, 255,cv2.THRESH_BINARY_INV)
腐蚀
thbw = cv2.erode(thbw, np.ones((2, 2),np.uint8), iterations=2)
查找轮廓
image, cntrs, hier =cv2.findContours(thbw.copy(), # 源图像
cv2.RETR_TREE, # 模式为查询所有
cv2.CHAIN_APPROX_SIMPLE) # 查询方法
rectangles = []
for c in cntrs:
r= x, y, w, h = cv2.boundingRect(c)
a= cv2.contourArea(c)
b= (img.shape[0] - 3) * (img.shape[1] - 3)
is_inside = False
for q in rectangles:
if inside(r, q):
is_inside = True
break
if not is_inside:
if not a == b:
rectangles.append(r)
向预测函数伟递正方形区域
for r in rectangles:
x, y, w, h = wrap_digit(r)
#绘制矩形
cv2.rectangle(img, (x, y), (x + w, y + h), (0,255, 0), 2)
#取得部分图像
roi = thbw[y:y + h, x:x + w]
try:
digit_class = int(ANN.predict(ann, roi.copy())[0])
except:
continue
cv2.putText(img, ‘%d’ % digit_class, (x, y - 1), font, 1, (0, 255, 0))
cv2.imshow(“thbw”, thbw)
cv2.imshow(“contours”, img)
cv2.imwrite(‘./image/sample.jpg’, img)
cv2.waitKey()
上一篇: matplotlib 画3D的bug
下一篇: 乱七八糟小知识总结