欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

《视觉SLAM十四讲》slambook/ch7/gpose_estimation_3d3d/详细版注释

程序员文章站 2024-03-25 08:00:33
...

初学欢迎指正!

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/SVD>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/solvers/eigen/linear_solver_eigen.h>
#include <g2o/types/sba/types_six_dof_expmap.h>
#include <chrono>

using namespace std;
using namespace cv;

void find_feature_matches (
    const Mat& img_1, const Mat& img_2,
    std::vector<KeyPoint>& keypoints_1,
    std::vector<KeyPoint>& keypoints_2,
    std::vector< DMatch >& matches );

// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );

void pose_estimation_3d3d (
    const vector<Point3f>& pts1,
    const vector<Point3f>& pts2,
    Mat& R, Mat& t
);

void bundleAdjustment(
    const vector<Point3f>& points_3d,
    const vector<Point3f>& points_2d,
    Mat& R, Mat& t
);

// g2o edge
class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, g2o::VertexSE3Expmap>
{
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    EdgeProjectXYZRGBDPoseOnly( const Eigen::Vector3d& point ) : _point(point) {}

    virtual void computeError()
    {
        const g2o::VertexSE3Expmap* pose = static_cast<const g2o::VertexSE3Expmap*> ( _vertices[0] );
        // measurement is p, point is p'
        _error = _measurement - pose->estimate().map( _point );
    }
    
    // 雅克比矩阵,即为导数
    virtual void linearizeOplus()
    {
        g2o::VertexSE3Expmap* pose = static_cast<g2o::VertexSE3Expmap *>(_vertices[0]);
        g2o::SE3Quat T(pose->estimate());
        Eigen::Vector3d xyz_trans = T.map(_point);
        double x = xyz_trans[0];
        double y = xyz_trans[1];
        double z = xyz_trans[2];
        
        _jacobianOplusXi(0,0) = 0;
        _jacobianOplusXi(0,1) = -z;
        _jacobianOplusXi(0,2) = y;
        _jacobianOplusXi(0,3) = -1;
        _jacobianOplusXi(0,4) = 0;
        _jacobianOplusXi(0,5) = 0;
        
        _jacobianOplusXi(1,0) = z;
        _jacobianOplusXi(1,1) = 0;
        _jacobianOplusXi(1,2) = -x;
        _jacobianOplusXi(1,3) = 0;
        _jacobianOplusXi(1,4) = -1;
        _jacobianOplusXi(1,5) = 0;
        
        _jacobianOplusXi(2,0) = -y;
        _jacobianOplusXi(2,1) = x;
        _jacobianOplusXi(2,2) = 0;
        _jacobianOplusXi(2,3) = 0;
        _jacobianOplusXi(2,4) = 0;
        _jacobianOplusXi(2,5) = -1;
    }

    bool read ( istream& in ) {}
    bool write ( ostream& out ) const {}
protected:
    Eigen::Vector3d _point;
};

int main ( int argc, char** argv )
{
    if ( argc != 5 )
    {
        cout<<"usage: pose_estimation_3d3d img1 img2 depth1 depth2"<<endl;
        return 1;
    }
    //-- 读取图像
    Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
    Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );

    //-- 匹配特征点
    vector<KeyPoint> keypoints_1, keypoints_2;//特征点(所有)容器(2D)
    vector<DMatch> matches;//匹配结果容器
    find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
    cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;

    // --建立3D点
    Mat depth1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED );       // 深度图为16位无符号数,单通道图像
    Mat depth2 = imread ( argv[4], CV_LOAD_IMAGE_UNCHANGED );       // 深度图为16位无符号数,单通道图像
    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
    vector<Point3f> pts1, pts2;//特征点(仅成功匹配的)容器(3D)
    // 填充容器:特征点(仅成功匹配的)容器(3D)
    for ( DMatch m:matches )
    {
        ushort d1 = depth1.ptr<unsigned short> ( int ( keypoints_1[m.queryIdx].pt.y ) ) [ int ( keypoints_1[m.queryIdx].pt.x ) ];
        ushort d2 = depth2.ptr<unsigned short> ( int ( keypoints_2[m.trainIdx].pt.y ) ) [ int ( keypoints_2[m.trainIdx].pt.x ) ];
        if ( d1==0 || d2==0 )   // bad depth
            continue;
        Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );
        Point2d p2 = pixel2cam ( keypoints_2[m.trainIdx].pt, K );
        float dd1 = float ( d1 ) /1000.0;
        float dd2 = float ( d2 ) /1000.0;
        pts1.push_back ( Point3f ( p1.x*dd1, p1.y*dd1, dd1 ) );
        pts2.push_back ( Point3f ( p2.x*dd2, p2.y*dd2, dd2 ) );
    }
    cout<<"3d-3d pairs: "<<pts1.size() <<endl;//打印3D点个数(成功匹配的)

    // ICP求解(SVD)
    Mat R, t;
    pose_estimation_3d3d ( pts1, pts2, R, t );
    cout<<"ICP via SVD results: "<<endl;
    cout<<"R = "<<R<<endl;
    cout<<"t = "<<t<<endl;
    cout<<"R_inv = "<<R.t() <<endl;
    cout<<"t_inv = "<<-R.t() *t<<endl;

    // ICP求解(BA)
    cout<<"calling bundle adjustment"<<endl;
    bundleAdjustment( pts1, pts2, R, t );
    // verify p1 = R*p2 + t 取5前五个匹配特征点对比BA方法求解结果
    for ( int i=0; i<5; i++ )
    {
        cout<<"p1 = "<<pts1[i]<<endl;
        cout<<"p2 = "<<pts2[i]<<endl;
        cout<<"(R*p2+t) = "<< 
            R * (Mat_<double>(3,1)<<pts2[i].x, pts2[i].y, pts2[i].z) + t
            <<endl;
        cout<<endl;
    }
}

void find_feature_matches ( const Mat& img_1, const Mat& img_2,
                            std::vector<KeyPoint>& keypoints_1,
                            std::vector<KeyPoint>& keypoints_2,
                            std::vector< DMatch >& matches )
{
    //-- 初始化
    Mat descriptors_1, descriptors_2;
    // used in OpenCV3 
    Ptr<FeatureDetector> detector = ORB::create();
    Ptr<DescriptorExtractor> descriptor = ORB::create();
    // use this if you are in OpenCV2 
    // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
    // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
    Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create("BruteForce-Hamming");
    //-- 第一步:检测 Oriented FAST 角点位置
    detector->detect ( img_1,keypoints_1 );
    detector->detect ( img_2,keypoints_2 );

    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute ( img_1, keypoints_1, descriptors_1 );
    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector<DMatch> match;
   // BFMatcher matcher ( NORM_HAMMING );
    matcher->match ( descriptors_1, descriptors_2, match );

    //-- 第四步:匹配点对筛选
    double min_dist=10000, max_dist=0;

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        double dist = match[i].distance;
        if ( dist < min_dist ) min_dist = dist;
        if ( dist > max_dist ) max_dist = dist;
    }

    printf ( "-- Max dist : %f \n", max_dist );
    printf ( "-- Min dist : %f \n", min_dist );

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
        {
            matches.push_back ( match[i] );
        }
    }
}

Point2d pixel2cam ( const Point2d& p, const Mat& K )
{
    return Point2d
           (
               ( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),
               ( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )
           );
}

void pose_estimation_3d3d (
    const vector<Point3f>& pts1,
    const vector<Point3f>& pts2,
    Mat& R, Mat& t
)
{
    //求出两组关键点的质心
    Point3f p1, p2;     // center of mass 
    int N = pts1.size();
    for ( int i=0; i<N; i++ )
    {
        p1 += pts1[i];
        p2 += pts2[i];
    }
    p1 = Point3f( Vec3f(p1) /  N);
    p2 = Point3f( Vec3f(p2) / N);

    // 求出各个点的去质心坐标
    vector<Point3f>     q1 ( N ), q2 ( N ); // remove the center
    for ( int i=0; i<N; i++ )
    {
        q1[i] = pts1[i] - p1;
        q2[i] = pts2[i] - p2;
    }

    // compute  q1*q2^T -------求出w(w=所有q1*q2^T之和)
    Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
    for ( int i=0; i<N; i++ )
    {
        W += Eigen::Vector3d ( q1[i].x, q1[i].y, q1[i].z ) * Eigen::Vector3d ( q2[i].x, q2[i].y, q2[i].z ).transpose();
    }
    cout<<"W="<<W<<endl;


    // SVD on W -------把W进行SVD分解,求出U和V
    Eigen::JacobiSVD<Eigen::Matrix3d> svd ( W, Eigen::ComputeFullU|Eigen::ComputeFullV );
    Eigen::Matrix3d U = svd.matrixU();
    Eigen::Matrix3d V = svd.matrixV();
    cout<<"U="<<U<<endl;
    cout<<"V="<<V<<endl;

    // 求出R,t
    Eigen::Matrix3d R_ = U* ( V.transpose() );
    Eigen::Vector3d t_ = Eigen::Vector3d ( p1.x, p1.y, p1.z ) - R_ * Eigen::Vector3d ( p2.x, p2.y, p2.z );
    // convert to cv::Mat-------转换成opencv的格式
    R = ( Mat_<double> ( 3,3 ) <<
          R_ ( 0,0 ), R_ ( 0,1 ), R_ ( 0,2 ),
          R_ ( 1,0 ), R_ ( 1,1 ), R_ ( 1,2 ),
          R_ ( 2,0 ), R_ ( 2,1 ), R_ ( 2,2 )
        );
    t = ( Mat_<double> ( 3,1 ) << t_ ( 0,0 ), t_ ( 1,0 ), t_ ( 2,0 ) );
}

void bundleAdjustment (
    const vector< Point3f >& pts1,
    const vector< Point3f >& pts2,
    Mat& R, Mat& t )
{
    // 初始化g2o
    typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block;  // pose维度为 6, landmark 维度为 3
    Block::LinearSolverType* linearSolver = new g2o::LinearSolverEigen<Block::PoseMatrixType>(); // 线性方程求解器
    Block* solver_ptr = new Block( linearSolver );      // 矩阵块求解器
    g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr );
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm( solver );

    // vertex
    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
    pose->setId(0);
    pose->setEstimate( g2o::SE3Quat(
        Eigen::Matrix3d::Identity(),
        Eigen::Vector3d( 0,0,0 )
    ) );
    optimizer.addVertex( pose );

    // edges
    int index = 1;
    vector<EdgeProjectXYZRGBDPoseOnly*> edges;
    for ( size_t i=0; i<pts1.size(); i++ )
    {
        EdgeProjectXYZRGBDPoseOnly* edge = new EdgeProjectXYZRGBDPoseOnly( 
            Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z) );
        edge->setId( index );
        edge->setVertex( 0, dynamic_cast<g2o::VertexSE3Expmap*> (pose) );
        edge->setMeasurement( Eigen::Vector3d( 
            pts1[i].x, pts1[i].y, pts1[i].z) );
        edge->setInformation( Eigen::Matrix3d::Identity()*1e4 );
        optimizer.addEdge(edge);
        index++;
        edges.push_back(edge);
    }

    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    optimizer.setVerbose( true );
    optimizer.initializeOptimization();
    optimizer.optimize(10);
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2-t1);
    cout<<"optimization costs time: "<<time_used.count()<<" seconds."<<endl;

    cout<<endl<<"after optimization:"<<endl;
    cout<<"T="<<endl<<Eigen::Isometry3d( pose->estimate() ).matrix()<<endl;
    
}