欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

深度学习总结:tensorflow和pytorch关于RNN的对比,tf.nn.dynamic_rnn,nn.LSTM

程序员文章站 2024-03-24 23:44:34
...

tensorflow和pytorch关于RNN的对比:
tf.nn.dynamic_rnn很难理解,他的意思只是用数据走一遍你搭建的RNN网络。
可以明显看出pytorch封装更高,更容易理解,动态图的优势。

## tensorflow
# RNN
# num_units=64代表h_t,c_t的维度
rnn_cell = tf.contrib.rnn.BasicLSTMCell(num_units=64)
# 这个累加的lstm_multi ,相当于pytorch里面的num_layers=3
stacked_rnn=[]
for i in range(3):
    stacked_rnn.append(rnn_cell )
lstm_multi = tf.contrib.rnn.MultiRNNCell(stacked_rnn)

# tf.nn.dynamic_rnn这个就是在吓唬你,就是把batch放入lstm_multi里面跑,跑完后的各个time-step的输出
# 和最后一步的h_t,c_t,相当于r_out, (h_n, h_c) = self.rnn(x, None),只不过tensorflow需要提前建好图
outputs, (h_c, h_n) = tf.nn.dynamic_rnn(
    lstm_multi ,                   # cell you have chosen
    image,                      # input
    initial_state=None,         # the initial hidden state
    dtype=tf.float32,           # must given if set initial_state = None
    time_major=False,           # False: (batch, time step, input); True: (time step, batch, input)
)

## pytorch
# hidden_size
        self.rnn = nn.LSTM(         # if use nn.RNN(), it hardly learns
            input_size=INPUT_SIZE,
            hidden_size=64,         # rnn hidden unit
            num_layers=3,           # number of rnn layer
            batch_first=True,       # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
        )
   
r_out, (h_n, h_c) = self.rnn(x, None)   # None represents zero initial hidden state