lstm - pytorch
程序员文章站
2024-03-24 23:32:22
...
1 lstm做分类
2 lstm做回归
3 lstm的参数输入
1 图像分类任务:
train_loader中取出来的变量维度: torch.Size([64, 1, 28, 28])
需要将其改成:torch.Size([64, 28, 28]) 代表batchsize , height, weight
lstm的参数设置:
input: 形状的输入(seq_len,batch,input_size)
h_0 :形状(num_layers * num_directions,batch,hidden_size):张量,包含批次中每个元素的初始隐藏状态。如果LSTM是双向的,则num_directions应该为2,否则应为1。
c_0 :形状(num_layers * num_directions,batch,hidden_size):张量,包含批次中每个元素的初始单元状态。
如果未提供(h_0,c_0),则h_0和c_0均默认为零。
batch_first :如果为True
,则输入和输出张量按(batch,seq,feature)提供
output:形状的输出(seq_len,batch,num_directions * hidden_size):张量,包含每个t的LSTM最后一层的输出特征(h_t)。如果已将a 用作输入,则输出也将是打包序列
import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import os
# torch.manual_seed(1) # reproducible
EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 64
TIME_STEP = 28 # rnn time step / image height
INPUT_SIZE = 28 # rnn input size / image width
LR = 0.01 # learning rate
DOWNLOAD_MNIST = False
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
# not mnist dir or mnist is empyt dir
DOWNLOAD_MNIST = True
# Mnist digital dataset
train_data = dsets.MNIST(
root='./mnist/',
train=True, # this is training data
transform=transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
download=DOWNLOAD_MNIST, # download it if you don't have it
)
# plot one example
print(train_data.train_data.size()) # (60000, 28, 28)
print(train_data.train_labels.size()) # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()
# Data Loader for easy mini-batch return in training
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# convert test data into Variable, pick 2000 samples to speed up testing
test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255. # shape (2000, 28, 28) value in range(0,1)
test_y = test_data.test_labels.numpy()[:2000] # covert to numpy array
input = torch.randn(5, 30, 100) # seq_len,batch,input_size
h0 = torch.randn(4, 30, 200) # num_layers * num_directions,batch,hidden_size
c0 = torch.randn(4, 30, 200) # num_layers * num_directions,batch,hidden_size
rnn = nn.LSTM(100, 200, 4) # input_size , hidden_size ,num_layers
output, (hn, cn) = rnn(input, (h0, c0)) #seq_len,batch,num_directions * hidden_size
print(output.shape)
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.LSTM( # if use nn.RNN(), it hardly learns
input_size=28,
hidden_size=64, # rnn hidden unit
num_layers=3, # number of rnn layer
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(64, 10)
def forward(self, x):
# x shape (batch, time_step, input_size)
# r_out shape (batch, time_step, output_size)
# h_n shape (n_layers, batch, hidden_size)
# h_c shape (n_layers, batch, hidden_size)
print(x.shape)
r_out, (h_n, h_c) = self.rnn(x, None) # None represents zero initial hidden state
print(r_out.shape)
# choose r_out at the last time step
out = self.out(r_out[:, -1, :])
return out
rnn = RNN()
print(rnn)
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
# training and testing
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader): # gives batch data
b_x = b_x.view(-1, 28, 28) # reshape x to (batch, time_step, input_size)
output = rnn(b_x) # rnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if step % 50 == 0:
test_output = rnn(test_x) # (samples, time_step, input_size)
pred_y = torch.max(test_output, 1)[1].data.numpy()
accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
# print 10 predictions from test data
test_output = rnn(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')
2 Lstm回归
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
TIME_STEP = 10 # rnn time step
INPUT_SIZE = 1 # rnn input size
LR = 0.02 # learning rate
# show data
# steps = np.linspace(0, np.pi*2, 100, dtype=np.float32) # float32 for converting torch FloatTensor
# x_np = np.sin(steps)
# y_np = np.cos(steps)
# plt.plot(steps, y_np, 'r-', label='target (cos)')
# plt.plot(steps, x_np, 'b-', label='input (sin)')
# plt.legend(loc='best')
# plt.show()
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.RNN(
input_size=1,
hidden_size=32, # rnn hidden unit
num_layers=1, # number of rnn layer
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(32, 1)
def forward(self, x, h_state):
# x (batch, time_step, input_size)
# h_state (n_layers, batch, hidden_size)
# r_out (batch, time_step, hidden_size)
r_out, h_state = self.rnn(x, h_state) # output: torch.Size([1, 10, 32])
# print('r_out:' , r_out.shape)
# outs = [] # save all predictions
# L1= r_out.size(1)
# for time_step in range(L1): # calculate output for each time step
# tmp1 = r_out[:, time_step, :]
# tmp2 = self.out(tmp1)
# outs.append(tmp2)
#
# outx = torch.stack(outs, dim=1)
# return outx , h_state
# instead, for simplicity, you can replace above codes by follows
r_out = r_out.view(-1, 32)
outs = self.out(r_out)
outs = outs.view(-1, TIME_STEP, 1)
return outs, h_state
# or even simpler, since nn.Linear can accept inputs of any dimension
# and returns outputs with same dimension except for the last
# outs = self.out(r_out)
# return outs
rnn = RNN()
print(rnn)
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.MSELoss()
h_state = None # for initial hidden state
# plt.figure(1, figsize=(12, 5))
# plt.ion() # continuously plot
for step in range(100):
start, end = step * np.pi, (step+1)*np.pi # time range
steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False) # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size)
# print('x:',x.shape)
y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])
# print('y:',y.shape)
prediction, h_state = rnn(x, h_state) # rnn output
# print(prediction.shape)
# !! next step is important !!
h_state = h_state.data # repack the hidden state, break the connection from last iteration
loss = loss_func(prediction, y) # calculate loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
print('step: ', step, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % 1)
# plotting
# plt.plot(steps, y_np.flatten(), 'r-')
# plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
# plt.draw(); plt.pause(0.05)
plt.ioff()
plt.show()
上一篇: Android 蓝牙通信
下一篇: android 蓝牙设备监听广播