单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例的特殊类。通过单例模式可以保证系统中一个类只有一个实例
注:Spring源码的版本4.3.4
Spring依赖注入Bean实例默认是单例的,我们由此展开。
Spring的依赖注入(包括lazy-init方式)都是发生在AbstractBeanFactory的getBean里。getBean的doGetBean方法调用getSingleton进行bean的创建。lazy-init方式,在容器初始化时候进行调用,非lazy-init方式,在用户向容器第一次索要bean时进行调用
同步线程安全的单例核心代码:
/** * Return the (raw) singleton object registered under the given name. * <p>Checks already instantiated singletons and also allows for an early * reference to a currently created singleton (resolving a circular reference). * @param beanName the name of the bean to look for * @param allowEarlyReference whether early references should be created or not * @return the registered singleton object, or {@code null} if none found */ protected Object getSingleton(String beanName, boolean allowEarlyReference) { Object singletonObject = this.singletonObjects.get(beanName); if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) { synchronized (this.singletonObjects) { singletonObject = this.earlySingletonObjects.get(beanName); if (singletonObject == null && allowEarlyReference) { ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName); if (singletonFactory != null) { singletonObject = singletonFactory.getObject(); this.earlySingletonObjects.put(beanName, singletonObject); this.singletonFactories.remove(beanName); } } } } return (singletonObject != NULL_OBJECT ? singletonObject : null); }
从上面代码可以看到,spring依赖注入时,使用了双重判断加锁的单例模式,首先从缓存中获取bean实例,如果为null,对缓存map加锁,然后再从缓存中获取bean,如果继续为null,就创建一个bean。这样双重判断,能够避免在加锁的瞬间,有其他依赖注入引发bean实例的创建,从而造成重复创建的结果。
在这里Spring并没有使用私有构造方法来创建bean,而是通过singletonFactory.getObject()返回具体beanName对应的ObjectFactory来创建bean。我们一路跟踪下去,发现实际上是调用了AbstractAutowireCapableBeanFactory的doCreateBean方法,返回了BeanWrapper包装并创建的bean实例。
(ObjectFactory主要检查是否有用户定义的BeanPostProcessor后处理内容,并在创建bean时进行处理,如果没有,就直接返回bean本身)
见如下代码:
512行创建bean实例返回给BeanWrapper
540行addSingletonFactory增加beanName和ObjectFactory的键值对应关系。
/** * Actually create the specified bean. Pre-creation processing has already happened * at this point, e.g. checking {@code postProcessBeforeInstantiation} callbacks. * <p>Differentiates between default bean instantiation, use of a * factory method, and autowiring a constructor. * @param beanName the name of the bean * @param mbd the merged bean definition for the bean * @param args explicit arguments to use for constructor or factory method invocation * @return a new instance of the bean * @throws BeanCreationException if the bean could not be created * @see #instantiateBean * @see #instantiateUsingFactoryMethod * @see #autowireConstructor */ protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final Object[] args) throws BeanCreationException { // Instantiate the bean. BeanWrapper instanceWrapper = null; if (mbd.isSingleton()) { instanceWrapper = this.factoryBeanInstanceCache.remove(beanName); } if (instanceWrapper == null) { instanceWrapper = createBeanInstance(beanName, mbd, args); } final Object bean = (instanceWrapper != null ? instanceWrapper.getWrappedInstance() : null); Class<?> beanType = (instanceWrapper != null ? instanceWrapper.getWrappedClass() : null); // Allow post-processors to modify the merged bean definition. synchronized (mbd.postProcessingLock) { if (!mbd.postProcessed) { try { applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName); } catch (Throwable ex) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Post-processing of merged bean definition failed", ex); } mbd.postProcessed = true; } } // Eagerly cache singletons to be able to resolve circular references // even when triggered by lifecycle interfaces like BeanFactoryAware. boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences && isSingletonCurrentlyInCreation(beanName)); if (earlySingletonExposure) { if (logger.isDebugEnabled()) { logger.debug("Eagerly caching bean '" + beanName + "' to allow for resolving potential circular references"); } addSingletonFactory(beanName, new ObjectFactory<Object>() { @Override public Object getObject() throws BeansException { return getEarlyBeanReference(beanName, mbd, bean); } }); }
getEarlyBeanReference获取bean的所有后处理器,并进行处理。如果是SmartInstantiationAwareBeanPostProcessor类型,就进行处理,如果没有相关处理内容,就返回默认的实现。
/** * Obtain a reference for early access to the specified bean, * typically for the purpose of resolving a circular reference. * @param beanName the name of the bean (for error handling purposes) * @param mbd the merged bean definition for the bean * @param bean the raw bean instance * @return the object to expose as bean reference */ protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) { Object exposedObject = bean; if (bean != null && !mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) { for (BeanPostProcessor bp : getBeanPostProcessors()) { if (bp instanceof SmartInstantiationAwareBeanPostProcessor) { SmartInstantiationAwareBeanPostProcessor ibp = (SmartInstantiationAwareBeanPostProcessor) bp; exposedObject = ibp.getEarlyBeanReference(exposedObject, beanName); if (exposedObject == null) { return null; } } } } return exposedObject; }
彩蛋在此:
各种单例实现方式(5种):懒汉模式,饿汉线程非安全模式,饿汉线程安全模式,内部类模式,枚举模式。现在最推荐的方式是枚举单例模式。对这些模式的描述和介绍,请仔细看代码中的注释,会有意想不到的收获呦!
package com.xhengxuyuanzhi; /** * @author 微信公众号:程序员之路 * 博客:http://www.cnblogs.com/chengxuyuanzhilu/ * * 饿汉式单例模式 * 特点:可以通过反射机制攻击;线程安全[多个类加载器除外]。 */ public class HungryType { public static final HungryType instance = new HungryType(); private HungryType(){ //初始化HungryType要做的事 } public void splitAlipay() { System.out.println("饿汉式单利模式"); } public static void main(String[] args) { HungryType ht = HungryType.instance; ht.splitAlipay(); } }
package com.xhengxuyuanzhi; /** * @author 微信公众号:程序员之路 * 博客:http://www.cnblogs.com/chengxuyuanzhilu/ * * 懒汉模式单例 * 特点:延时加载;线程不安全,多线程下不能正常工作; */ public class SluggardType { private static SluggardType instance = null; private SluggardType() { } public static SluggardType getInstance(){ if(instance == null){ instance = new SluggardType(); } return instance; } public void say(){ System.out.println("懒汉模式单例"); } public static void main(String[] args) { SluggardType.getInstance().say(); } }
package com.xhengxuyuanzhi; /** * @author 微信公众号:程序员之路 * 博客:http://www.cnblogs.com/chengxuyuanzhilu/ * * 懒汉模式(双重校验锁[不推荐])单例 */ public class SluggardType2 { //volatile 关键字可以禁止指令重排 :可以确保instance = new SluggardType2()对应的指令不会重排序 //但是因为对volatile的操作都在Main Memory中,而Main Memory是被所有线程所共享的,这里的代价就是牺牲了性能,无法利用寄存器或Cache private volatile static SluggardType2 instance = null; private SluggardType2(){ } public static SluggardType2 getInstance(){ if(instance == null){ synchronized (SluggardType2.class) { if(instance == null){ instance = new SluggardType2(); } } } return instance; } public void say(){ System.out.println(" 懒汉模式(双重校验锁[不推荐])单例"); } public static void main(String[] args) { SluggardType2.getInstance().say(); } }
package com.xhengxuyuanzhi; /** * @author 微信公众号:程序员之路 * 博客:http://www.cnblogs.com/chengxuyuanzhilu/ * * 借助内部类实现单利模式: * 特点:既能实现延迟加载,又能实现线程安全 */ public class InnerClassSingleton { /** * 类级的内部类,也就是静态的成员式内部类,该内部类的实例与外部类的实例没有绑定关系,而且只有被调用到时才会装载(装在过程是由jvm保证线程安全) * ,从而实现了延迟加载 */ private static class SingletonHolder { /** * 静态初始化器,由JVM来保证线程安全 */ private static InnerClassSingleton instance = new InnerClassSingleton(); } /** * 私有化构造方法 */ private InnerClassSingleton() { } /** * 这个模式的优势在于:getInstance方法并没有被同步,并且只是执行一个域的访问,因此延迟初始化并没有增加任何访问成本 */ public static InnerClassSingleton getInstance() { return SingletonHolder.instance; } }
package com.xhengxuyuanzhi; /** * @author 微信公众号:程序员之路 * 博客:http://www.cnblogs.com/chengxuyuanzhilu/ * * 枚举实现线程安全的单例模式: * 特点:JVM会保证enum不能被反射并且构造器方法只执行一次 * */ public class EnumSingleton { private EnumSingleton() { } public static EnumSingleton getInstance() { return Singleton.INSTANCE.getInstance(); } private static enum Singleton { INSTANCE; private EnumSingleton singleton; // JVM会保证此方法绝对只调用一次 private Singleton() { singleton = new EnumSingleton(); } public EnumSingleton getInstance() { return singleton; } } }