MapReduce 开发手册
MapReduce 开发手册
在 MapReduce 中使用 OSS
要在 MapReduce 中读写 OSS,需要配置如下的参数
conf.set("fs.oss.accessKeyId", "${accessKeyId}");
conf.set("fs.oss.accessKeySecret", "${accessKeySecret}");
conf.set("fs.oss.endpoint","${endpoint}");
参数说明:
${accessKeyId}: 您账号的 AccessKeyId。
${accessKeySecret}: 该 AccessKeyId 对应的**。
${endpoint}: 访问 OSS 使用的网络,由您集群所在的 region 决定,当然对应的 OSS 也需要是在集群对应的 region。
具体的值请参考 OSS Endpoint
Word Count
以下示例介绍了如何从 OSS 中读取文本,然后统计其中单词的数量。其操作步骤如下:
-
程序编写。以 JAVA 代码为例,将 Hadoop 官网 WordCount 例子做如下修改。对该实例的修改只是在代码中添加了 Access Key ID 和 Access Key Secret 的配置,以便作业有权限访问 OSS 文件。
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class EmrWordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
conf.set("fs.oss.accessKeyId", "${accessKeyId}");
conf.set("fs.oss.accessKeySecret", "${accessKeySecret}");
conf.set("fs.oss.endpoint","${endpoint}");
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(EmrWordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
-
编译程序。首先要将 jdk 和 Hadoop 环境配置好,然后进行如下操作:
mkdir wordcount_classes
javac -classpath ${HADOOP_HOME}/share/hadoop/common/hadoop-common-2.6.0.jar:${HADOOP_HOME}/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons-cli-1.2.jar -d wordcount_classes EmrWordCount.java
jar cvf wordcount.jar -C wordcount_classes .
-
创建作业。
-
将上一步打好的 jar 文件上传到 OSS,具体可登录 OSS 官网进行操作。假设 jar 文件在 OSS 上的路径为 oss://emr/jars/wordcount.jar, 输入输出路径分别为 oss://emr/data/WordCount/Input 和 oss://emr/data/WordCount/Output。
-
在 E-MapReduce作业 中创建如下作业:
-
-
创建执行计划。在 E-MapReduce 执行计划中创建执行计划,将上一步创建好的作业添加到执行计划中,策略选择“立即执行”,这样 wordcount 作业就会在选定集群中运行起来了。
使用 Maven 工程来管理 MR 作业
当您的工程规模越来越大时,会变得非常复杂,不易管理。我们推荐你采用类似 Maven 这样的软件项目管理工具来进行管理。其操作步骤如下:
-
安装 Maven。首先确保您已经安装了 Maven。
-
生成工程框架。在您的工程根目录处(假设您的工程开发根目录位置是 D:/workspace)执行如下命令:
mvn archetype:generate -DgroupId=com.aliyun.emr.hadoop.examples -DartifactId=wordcountv2 -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false
mvn 会自动生成一个空的 Sample 工程位于 D:/workspace/wordcountv2(和您指定的 artifactId 一致),里面包含一个简单的 pom.xml 和 App 类(类的包路径和您指定的 groupId 一致)。
-
加入 Hadoop 依赖。使用任意 IDE 打开这个工程,编辑 pom.xml 文件。在 dependencies 内添加如下内容:
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-common</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.0</version>
</dependency>
-
编写代码。在 com.aliyun.emr.hadoop.examples 包下和 App 类平行的位置添加新类 WordCount2.java。内容如下:
package com.aliyun.emr.hadoop.examples;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.StringUtils;
public class WordCount2 {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
static enum CountersEnum { INPUT_WORDS }
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
private boolean caseSensitive;
private Set<String> patternsToSkip = new HashSet<String>();
private Configuration conf;
private BufferedReader fis;
@Override
public void setup(Context context) throws IOException,
InterruptedException {
conf = context.getConfiguration();
caseSensitive = conf.getBoolean("wordcount.case.sensitive", true);
if (conf.getBoolean("wordcount.skip.patterns", true)) {
URI[] patternsURIs = Job.getInstance(conf).getCacheFiles();
for (URI patternsURI : patternsURIs) {
Path patternsPath = new Path(patternsURI.getPath());
String patternsFileName = patternsPath.getName().toString();
parseSkipFile(patternsFileName);
}
}
}
private void parseSkipFile(String fileName) {
try {
fis = new BufferedReader(new FileReader(fileName));
String pattern = null;
while ((pattern = fis.readLine()) != null) {
patternsToSkip.add(pattern);
}
} catch (IOException ioe) {
System.err.println("Caught exception while parsing the cached file '"
+ StringUtils.stringifyException(ioe));
}
}
@Override
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String line = (caseSensitive) ?
value.toString() : value.toString().toLowerCase();
for (String pattern : patternsToSkip) {
line = line.replaceAll(pattern, "");
}
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
Counter counter = context.getCounter(CountersEnum.class.getName(),
CountersEnum.INPUT_WORDS.toString());
counter.increment(1);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("fs.oss.accessKeyId", "${accessKeyId}");
conf.set("fs.oss.accessKeySecret", "${accessKeySecret}");
conf.set("fs.oss.endpoint","${endpoint}");
GenericOptionsParser optionParser = new GenericOptionsParser(conf, args);
String[] remainingArgs = optionParser.getRemainingArgs();
if (!(remainingArgs.length != 2 || remainingArgs.length != 4)) {
System.err.println("Usage: wordcount <in> <out> [-skip skipPatternFile]");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount2.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
List<String> otherArgs = new ArrayList<String>();
for (int i=0; i < remainingArgs.length; ++i) {
if ("-skip".equals(remainingArgs[i])) {
job.addCacheFile(new Path(EMapReduceOSSUtil.buildOSSCompleteUri(remainingArgs[++i], conf)).toUri());
job.getConfiguration().setBoolean("wordcount.skip.patterns", true);
} else {
otherArgs.add(remainingArgs[i]);
}
}
FileInputFormat.addInputPath(job, new Path(EMapReduceOSSUtil.buildOSSCompleteUri(otherArgs.get(0), conf)));
FileOutputFormat.setOutputPath(job, new Path(EMapReduceOSSUtil.buildOSSCompleteUri(otherArgs.get(1), conf)));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
其中的 EMapReduceOSSUtil 类代码请参见如下示例,放在和 WordCount2 相同目录:
package com.aliyun.emr.hadoop.examples;
import org.apache.hadoop.conf.Configuration;
public class EMapReduceOSSUtil {
private static String SCHEMA = "oss://";
private static String AKSEP = ":";
private static String BKTSEP = "@";
private static String EPSEP = ".";
private static String HTTP_HEADER = "http://";
/**
* complete OSS uri
* convert uri like: oss://bucket/path to oss://accessKeyId:aaa@qq.com/path
* ossref do not need this
*
* @param oriUri original OSS uri
*/
public static String buildOSSCompleteUri(String oriUri, String akId, String akSecret, String endpoint) {
if (akId == null) {
System.err.println("miss accessKeyId");
return oriUri;
}
if (akSecret == null) {
System.err.println("miss accessKeySecret");
return oriUri;
}
if (endpoint == null) {
System.err.println("miss endpoint");
return oriUri;
}
int index = oriUri.indexOf(SCHEMA);
if (index == -1 || index != 0) {
return oriUri;
}
int bucketIndex = index + SCHEMA.length();
int pathIndex = oriUri.indexOf("/", bucketIndex);
String bucket = null;
if (pathIndex == -1) {
bucket = oriUri.substring(bucketIndex);
} else {
bucket = oriUri.substring(bucketIndex, pathIndex);
}
StringBuilder retUri = new StringBuilder();
retUri.append(SCHEMA)
.append(akId)
.append(AKSEP)
.append(akSecret)
.append(BKTSEP)
.append(bucket)
.append(EPSEP)
.append(stripHttp(endpoint));
if (pathIndex > 0) {
retUri.append(oriUri.substring(pathIndex));
}
return retUri.toString();
}
public static String buildOSSCompleteUri(String oriUri, Configuration conf) {
return buildOSSCompleteUri(oriUri, conf.get("fs.oss.accessKeyId"), conf.get("fs.oss.accessKeySecret"), conf.get("fs.oss.endpoint"));
}
private static String stripHttp(String endpoint) {
if (endpoint.startsWith(HTTP_HEADER)) {
return endpoint.substring(HTTP_HEADER.length());
}
return endpoint;
}
}
-
编译并打包上传。在工程的目录下,执行如下命令:
mvn clean package -DskipTests
您即可在工程目录的 target 目录下看到一个 wordcountv2-1.0-SNAPSHOT.jar,这个就是作业 jar 包了。请您将这个 jar 包上传到 OSS 中。
-
创建作业。在 E-MapReduce 中新建一个作业,请使用类似如下的参数配置:
jar ossref://yourBucket/yourPath/wordcountv2-1.0-SNAPSHOT.jar com.aliyun.emr.hadoop.examples.WordCount2 -Dwordcount.case.sensitive=true oss://yourBucket/yourPath/The_Sorrows_of_Young_Werther.txt oss://yourBucket/yourPath/output -skip oss://yourBucket/yourPath/patterns.txt
这里的 yourBucket 是您的一个 OSS bucket,yourPath 是这个 bucket 上的一个路径,需要您按照实际情况填写。请您将
oss://yourBucket/yourPath/The_Sorrows_of_Young_Werther.txt
和oss://yourBucket/yourPath/patterns.txt
这两个用来处理相关资源的文件下载下来并放到您的 OSS 上。作业需要资源可以从下面下载,然后放到您的 OSS 对应目录下。 -
创建执行计划并运行。在 E-MapReduce 中创建执行计划,关联这个作业并运行。
上一篇: Android ExpandableListView的使用
下一篇: 汉诺塔问题(递归思想)