Python导入模块,你真的融会贯通了吗?
]
作为一名新手Python程序员,你首先需要学习的内容之一就是如何导入模块或包。但是我注意到,那些许多年来不时使用Python的人并不是都知道Python的导入机制其实非常灵活。在本文中,我们将探讨以下话题:
- 常规导入(regular imports)
- 使用from语句导入
- 相对导入(relative imports)
- 可选导入(optional imports)
- 本地导入(local imports)
- 导入注意事项
常规导入
常规导入应该是最常使用的导入方式,大概是这样的:
1. import
2. sys
你只需要使用 import一词,然后指定你希望导入的模块或包即可。通过这种方式导入的好处是可以一次性导入多个包或模块:
1. import
2. os, sys, time
虽然这节省了空间,但是却违背了Python风格指南。Python风格指南建议将每个导入语句单独成行。
有时在导入模块时,你想要重命名这个模块。这个功能很容易实现:
在学习过程中有什么不懂得可以加我的
python学习交流扣扣qun,784758214
群里有不错的学习****、开发工具与电子书籍。
与你分享python企业当下人才需求及怎么从零基础学习好python,和学习什么内容
1. import
2. sys
3. as
4. system
5. print
6. (system.platform)
上面的代码将我们导入的 sys模块重命名为 system。我们可以按照和以前一样的方式调用模块的方法,但是可以用一个新的模块名。也有某些子模块必须要使用点标记法才能导入。
1. import
2. urllib.error
这个情况不常见,但是对此有所了解总是没有坏处的。
使用from语句导入
很多时候你只想要导入一个模块或库中的某个部分。我们来看看在Python中如何实现这点:
1. from
2. functools
3. import
4. lru_cache
上面这行代码可以让你直接调用 lru_cache。如果你按常规方式导入 functools,那么你就必须像这样调用 lru_cache:
1. functools.lru_cache(*args)
根据你实际的使用场景,上面的做法可能是更好的。在复杂的代码库中,能够看出某个函数是从哪里导入的这点很有用的。不过,如果你的代码维护的很好,模块化程度高,那么只从某个模块中导入一部分内容也是非常方便和简洁的。
当然,你还可以使用from方法导入模块的全部内容,就像这样:
1. from
2. os
3. import
4. *
这种做法在少数情况下是挺方便的,但是这样也会打乱你的命名空间。问题在于,你可能定义了一个与导入模块中名称相同的变量或函数,这时如果你试图使用 os模块中的同名变量或函数,实际使用的将是你自己定义的内容。因此,你最后可能会碰到一个相当让人困惑的逻辑错误。标准库中我唯一推荐全盘导入的模块只有Tkinter。
如果你正好要写自己的模块或包,有人会建议你在 init.py文件中导入所有内容,让模块或者包使用起来更方便。我个人更喜欢显示地导入,而非隐式地导入。
你也可以采取折中方案,从一个包中导入多个项:
1. from
2. os
3. import
4. path, walk, unlink
5. from
6. os
7. import
8. uname, remove
在上述代码中,我们从 os模块中导入了5个函数。你可能注意到了,我们是通过多次从同一个模块中导入实现的。当然,如果你愿意的话,你也可以使用圆括号一次性导入多个项:
1. from
2. os
3. import
4. (path, walk, unlink, uname,
5. remove, rename)
这是一个有用的技巧,不过你也可以换一种方式:
1. from
2. os
3. import
4. path, walk, unlink, uname, \
5. remove, rename
上面的反斜杠是Python中的续行符,告诉解释器这行代码延续至下一行。
相对导入
PEP 328介绍了引入相对导入的原因,以及选择了哪种语法。具体来说,是使用句点来决定如何相对导入其他包或模块。这么做的原因是为了避免偶然情况下导入标准库中的模块产生冲突。这里我们以PEP 328中给出的文件夹结构为例,看看相对导入是如何工作的:
1. my_package/
2. __init__.py
3. subpackage1/
4. __init__.py
5. module_x.py
6. module_y.py
7. subpackage2/
8. __init__.py
9. module_z.py
10. module_a.py
在本地磁盘上找个地方创建上述文件和文件夹。在顶层的 init.py文件中,输入以下代码:
1. from
2. .
3. import
4. subpackage1
5. from
6. .
7. import
8. subpackage2
接下来进入 subpackage1文件夹,编辑其中的 init.py文件,输入以下代码:
1. from
2. .
3. import
4. module_x
5. from
6. .
7. import
8. module_y
现在编辑 module_x.py文件,输入以下代码:
1. from
2. .module_y
3. import
4. spam
5. as
6. ham
7. def
8. main():
9. ham()
最后编辑 module_y.py文件,输入以下代码:
1. def
2. spam():
4. print
5. (
6. 'spam '
7. *
8. 3
9. )
打开终端, cd至 my_package包所在的文件夹,但不要进入 my_package。在这个文件夹下运行Python解释器。我使用的是IPython,因为它的自动补全功能非常方便:
1. In
2. [
3. 1
4. ]:
5. import
6. my_package
7. In
8. [
9. 2
10. ]: my_package.subpackage1.module_x
11. Out
12. [
13. 2
14. ]: <
15. module
17. 'my_package.subpackage1.module_x'
19. from
21. 'my_package/subpackage1/module_x.py'
22. >
23. In
24. [
25. 3
26. ]: my_package.subpackage1.module_x.main()
27. spam spam spam
相对导入适用于你最终要放入包中的代码。如果你编写了很多相关性强的代码,那么应该采用这种导入方式。你会发现PyPI上有很多流行的包也是采用了相对导入。还要注意一点,如果你想要跨越多个文件层级进行导入,只需要使用多个句点即可。不过,PEP 328建议相对导入的层级不要超过两层。
还要注意一点,如果你往 module_x.py文件中添加了 if__name__==‘main’,然后试图运行这个文件,你会碰到一个很难理解的错误。编辑一下文件,试试看吧!
1. from
2. . module_y
3. import
4. spam
5. as
6. ham
7. def
8. main():
9. ham()
10. if
11. __name__ ==
12. '__main__'
13. :
15. # This won't work!
16. main()
现在从终端进入 subpackage1文件夹,执行以下命令:
1. python module_x.py
如果你使用的是Python 2,你应该会看到下面的错误信息:
1. Traceback
2. (most recent call
3. last
4. ):
6. File
8. "module_x.py"
9. , line
10. 1
11. ,
12. in
14. <module>
16. from
17. . module_y
18. import
19. spam
20. as
21. ham
22. ValueError
23. :
24. Attempted
25. relative
26. import
28. in
29. non-
30. package
如果你使用的是Python 3,错误信息大概是这样的:
1. Traceback
2. (most recent call
3. last
4. ):
6. File
8. "module_x.py"
9. , line
10. 1
11. ,
12. in
14. <module>
16. from
17. . module_y
18. import
19. spam
20. as
21. ham
22. SystemError
23. :
24. Parent
26. module
28. ''
30. not
31. loaded, cannot perform relative
32. import
这指的是, module_x.py是某个包中的一个模块,而你试图以脚本模式执行,但是这种模式不支持相对导入。
如果你想在自己的代码中使用这个模块,那么你必须将其添加至Python的导入检索路径(import search path)。最简单的做法如下:
1. import
2. sys
3. sys.path.append(
4. '/path/to/folder/containing/my_package'
5. )
6. import
7. my_package
注意,你需要添加的是 my_package的上一层文件夹路径,而不是 my_package本身。原因是 my_package就是我们想要使用的包,所以如果你添加它的路径,那么将无法使用这个包。
我们接下来谈谈可选导入。
可选导入(Optional imports)
如果你希望优先使用某个模块或包,但是同时也想在没有这个模块或包的情况下有备选,你就可以使用可选导入这种方式。这样做可以导入支持某个软件的多种版本或者实现性能提升。以github2包中的代码为例:
在学习过程中有什么不懂得可以加我的
python学习交流扣扣qun,784758214
群里有不错的学习****、开发工具与电子书籍。
与你分享python企业当下人才需求及怎么从零基础学习好python,和学习什么内容
1. try
2. :
4. # For Python 3
6. from
7. http.client
8. import
9. responses
10. except
12. ImportError
13. :
14. # For Python 2.5-2.7
16. try
17. :
19. from
20. httplib
21. import
22. responses
23. # NOQA
25. except
27. ImportError
28. :
29. # For Python 2.4
31. from
33. BaseHTTPServer
35. import
37. BaseHTTPRequestHandler
39. as
40. _BHRH
41. responses = dict([(k, v[
42. 0
43. ])
44. for
45. k, v
46. in
47. _BHRH.responses.items()]
lxml包也有使用可选导入方式:
1. try
2. :
4. from
5. urlparse
6. import
7. urljoin
9. from
10. urllib2
11. import
12. urlopen
13. except
15. ImportError
16. :
18. # Python 3
20. from
21. urllib.parse
22. import
23. urljoin
25. from
26. urllib.request
27. import
28. urlopen
正如以上示例所示,可选导入的使用很常见,是一个值得掌握的技巧。
局部导入
当你在局部作用域中导入模块时,你执行的就是局部导入。如果你在Python脚本文件的顶部导入一个模块,那么你就是在将该模块导入至全局作用域,这意味着之后的任何函数或方法都可能访问该模块。例如:
1. import
2. sys
3. # global scope
4. def
5. square_root(a):
7. # This import is into the square_root functions local scope
9. import
10. math
12. return
13. math.sqrt(a)
14. def
15. my_pow(base_num, power):
17. return
18. math.pow(base_num, power)
19. if
20. __name__ ==
21. '__main__'
22. :
24. print
25. (square_root(
26. 49
27. ))
29. print
30. (my_pow(
31. 2
32. ,
33. 3
34. ))
这里,我们将 sys模块导入至全局作用域,但我们并没有使用这个模块。然后,在 square_root函数中,我们将 math模块导入至该函数的局部作用域,这意味着 math模块只能在 square_root函数内部使用。如果我们试图在 my_pow函数中使用 math,会引发 NameError。试着执行这个脚本,看看会发生什么。
使用局部作用域的好处之一,是你使用的模块可能需要很长时间才能导入,如果是这样的话,将其放在某个不经常调用的函数中或许更加合理,而不是直接在全局作用域中导入。老实说,我几乎从没有使用过局部导入,主要是因为如果模块内部到处都有导入语句,会很难分辨出这样做的原因和用途。根据约定,所有的导入语句都应该位于模块的顶部。
导入注意事项
在导入模块方面,有几个程序员常犯的错误。这里我们介绍两个。
- 循环导入(circular imports)
- 覆盖导入(Shadowed imports,暂时翻译为覆盖导入)
先来看看循环导入。
循环导入
如果你创建两个模块,二者相互导入对方,那么就会出现循环导入。例如:
1. # a.py
2. import
3. b
4. def
5. a_test():
7. print
8. (
9. "in a_test"
10. )
11. b.b_test()
12. a_test()
然后在同个文件夹中创建另一个模块,将其命名为 b.py。
1. import
2. a
3. def
4. b_test():
6. print
7. (
8. 'In test_b"'
9. )
10. a.a_test()
11. b_test()
如果你运行任意一个模块,都会引发 AttributeError。这是因为这两个模块都在试图导入对方。简单来说,模块 a想要导入模块 b,但是因为模块 b也在试图导入模块 a(这时正在执行),模块 a将无法完成模块 b的导入。我看过一些解决这个问题的**方法(hack),但是一般来说,你应该做的是重构代码,避免发生这种情况。
覆盖导入
当你创建的模块与标准库中的模块同名时,如果你导入这个模块,就会出现覆盖导入。举个例子,创建一个名叫 math.py的文件,在其中写入如下代码:
1. import
2. math
3. def
4. square_root(number):
6. return
7. math.sqrt(number)
8. square_root(
9. 72
10. )
现在打开终端,试着运行这个文件,你会得到以下回溯信息(traceback):
1. Traceback
2. (most recent call
3. last
4. ):
6. File
8. "math.py"
9. , line
10. 1
11. ,
12. in
14. <module>
16. import
17. math
19. File
21. "/Users/michael/Desktop/math.py"
22. , line
23. 6
24. ,
25. in
27. <module>
28. square_root(
29. 72
30. )
32. File
34. "/Users/michael/Desktop/math.py"
35. , line
36. 4
37. ,
38. in
39. square_root
41. return
42. math.sqrt(number)
43. AttributeError
44. :
45. module
47. 'math'
48. has
49. no
50. attribute
51. 'sqrt'
在学习过程中有什么不懂得可以加我的
python学习交流扣扣qun,784758214
群里有不错的学习****、开发工具与电子书籍。
与你分享python企业当下人才需求及怎么从零基础学习好python,和学习什么内容
这到底是怎么回事?其实,你运行这个文件的时候,Python解释器首先在当前运行脚本所处的的文件夹中查找名叫 math的模块。在这个例子中,解释器找到了我们正在执行的模块,试图导入它。但是我们的模块中并没有叫 sqrt的函数或属性,所以就抛出了 AttributeError。
总结
在本文中,我们讲了很多有关导入的内容,但是还有部分内容没有涉及。PEP 302中介绍了导入钩子(import hooks),支持实现一些非常酷的功能,比如说直接从github导入。Python标准库中还有一个importlib模块,值得查看学习。当然,你还可以多看看别人写的代码,不断挖掘更多好用的妙招。