欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

网络流/基环树/找环(石油大学组队赛 L: Road Construction)

程序员文章站 2024-03-23 15:41:58
...

网络流/基环树/找环(石油大学组队赛 L: Road Construction)
题意,给你一个基环树,每个边都可以用一个集合中材料之一修建,有m个工人,每一个工人擅长一种材料(可以用这个材料修建边),每个工人只能修一条路。问,可不可以修建出一颗树。

网络流板子,不在环上的边必须修建,在环上的k条边只要修建k-1条即可。为了优先选择非环边,我们将环上的边加以限制,连接到一个虚节点,再从这个虚节点往T一个容量为k-1的边连接。非环边直接往T连接一个容量为1的边。剩下按照模板建图。

这里我采用了暴力找环的方式找到环上的点,然后对于每个边,用两个端点pair<x, y>向一个编号建立双射。记录每个种材料的边的编号。工人直接向这个材料集合中的边(基环树边)建边(网络流边)。

#include<cstdio>
#include<iostream>
#include<cstring>
#include <map>
#include <queue>
#include <set>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <list>
#include <bitset>
#include <array>
#include <cctype>
#include <time.h>

#pragma GCC optimize(2)

void read_f() { freopen("1.in", "r", stdin); freopen("1.out", "w", stdout); }
void fast_cin() { std::ios::sync_with_stdio(false); std::cin.tie(); }
void run_time() { std::cout << "ESC in : " << clock() * 1000.0 / CLOCKS_PER_SEC << "ms" << std::endl; }
template <typename T>
bool bacmp(const T & a, const T & b) { return a > b; }
template <typename T>
bool pecmp(const T & a, const T & b) { return a < b; }

#define ll long long
#define ull unsigned ll
#define _min(x, y) ((x)>(y)?(y):(x))
#define _max(x, y) ((x)>(y)?(x):(y))
#define max3(x, y, z) ( max( (x), max( (y), (z) ) ) )
#define min3(x, y, z) ( min( (x), min( (y), (z) ) ) )
#define pr(x, y) (make_pair((x), (y)))
#define pb(x) push_back(x);
using namespace std;

const int N = 1e4 + 5;
const int M = 1e7+5;
const int inf = 0x3f3f3f3f;

int he[N], ne[M], ver[M], e[M];
int l[N];
int tot = 1;
void add(int x, int y, int w)
{
    ver[++tot] = y;
    ne[tot] = he[x];
    e[tot] = w;
    he[x] = tot;
    ver[++tot] = x;
    ne[tot] = he[y];
    e[tot] = 0;
    he[y] = tot;
}
bool bfs(int s, int en)
{
    memset(l, 0, sizeof(l));
    queue<int> q;
    q.push(s);
    l[s] = 1;
    while(q.size())
    {
        int u = q.front();
        q.pop();
        if (u == en) return 1;
        for (int i = he[u]; i; i = ne[i])
        {
            int y = ver[i];
            if (!l[y] && e[i])
            {
                l[y] = l[u] + 1;
                q.push(y);
            }
        }
    }
    return 0;
}
int dfs(int u, int MaxFlow, int en)
{
    if (u == en) return MaxFlow;
    int uflow = 0;
    for (int i = he[u]; i; i = ne[i])
    {
        int y = ver[i];
        if (l[y] == l[u]+1 && e[i])
        {
            int flow = min(e[i], MaxFlow - uflow);
            flow = dfs(y, flow, en);
            e[i] -= flow;
            e[i^1] += flow;
            uflow += flow;
            if (uflow == MaxFlow)
                break;
        }
    }
    if (uflow == 0)
        l[u] = 0;
    return uflow;
}
int Dinic(int s, int t)
{
    int MaxF = 0;
    while(bfs(s, t))
        MaxF += dfs(s, inf, t);
    return MaxF;
}
int cntp, ans[N], st[N], top;
bool vis[N];

int the[N], tver[N], tne[N], ttot;
void tadd(int x, int y)
{
    tver[++ttot] = y;
    tne[ttot] = the[x];
    the[x] = ttot;
}
bool dfs_w(int cur, int fa)
{
    st[++top] = cur;
    vis[cur] = 1;
    for (int i = the[cur]; i; i = tne[i])
    {
        
        int y = tver[i]; if (y == fa) continue;
        if (vis[y])
        {
            while(st[top] != y)
                ans[++cntp] = st[top--];
            ans[++cntp] = y;
            return 1;
        }
        else
            if (dfs_w(y, cur)) return 1;
    }
    top--;
    return 0;
}
map<pair<int, int>, int> mp;
map<int, vector<int> > col;
pair<int, int> cc[N];
int main()
{
    int n, m; scanf("%d%d", &n, &m);
    int cnt = 0;
    for (int i = 1; i <= n; i++)
    {
        int a; scanf("%d", &a);
        tadd(i, a); tadd(a, i);
        mp[pr(min(i, a), max(a, i))] = ++cnt;
        cc[cnt] = pr(i, a);
        int k = 0; scanf("%d", &k);
        while(k--)
        {
            int te; scanf("%d", &te);
            col[te].pb(cnt);
        }
    }
    dfs_w(1, 0);
    for (int i = 1; i <= cntp; i++)
    {
        int l = ans[i], r = ans[(i) % cntp + 1];
        if (l > r) swap(l, r);
        mp[pr(l, r)] = -mp[pr(l, r)];
    }
    int vur = ++cnt;
    int s = 0, t = cnt + m + 1;
    add(vur, t, cntp - 1);
    for (auto x : mp)
    {
        if (x.second < 0) add(-x.second, vur, 1);
        else add(x.second, t, 1);
    }
    for (int i = 1; i <= m; i++)
    {
        int cl; scanf("%d", &cl);
        for (int x : col[cl])
            add(i+cnt, x, 1);
        add(s, i+cnt, 1);
    }
    int ans = Dinic(s, t);
    if (ans == n - 1) 
    {
        //cout << ans << endl;
        for (int i = cnt + 1; i <= cnt + m; i++)
        {
            bool flag = 0;
            for (int j = he[i]; j; j = ne[j])
            {
                if (!e[j] && ver[j] != s)
                {
                    flag = 1; 
                    printf("%d %d\n", cc[ver[j]].first, cc[ver[j]].second); 
                    break;
                }
            }
            if (!flag) puts("0 0");
        }
    }
    else puts("-1");
    return 0;
}