欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

tensenflow入门学习-1

程序员文章站 2024-03-23 13:20:16
...

Tensorflow MNIST

本文主要是自己在入门TensorFlow时候的对其中概念的一些理解。可能有不对的地方。谢谢。


MNIST数据集下载

参考文档中使用的是input_data.py文件进行MNIST数据的下载,但这份源码在参照文档中的链接是googlesource,国内无法下载,只好把从其他地方下载源码。代码如下:
我使用的python3以上的版本,如果使用的是python2.7的版本请将下面两点
- urllib.request.urlretrieve修改成urllib.urlretrieve
- numpy.frombuffer(bytestream.read(4), dtype=dt)[0]修改成numpy.frombuffer(bytestream.read(4), dtype=dt)

"""Functions for downloading and reading MNIST data."""
from __future__ import print_function
import gzip
import os
import urllib.request
import numpy
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
  """Download the data from Yann's website, unless it's already here."""
  if not os.path.exists(work_directory):
    os.mkdir(work_directory)
  filepath = os.path.join(work_directory, filename)
  print("filepath %s",filepath)
  if not os.path.exists(filepath):
    filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
    statinfo = os.stat(filepath)
    print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')

  print("There is source %s",filepath)
  return filepath

def _read32(bytestream):
  dt = numpy.dtype(numpy.uint32).newbyteorder('>')
  return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename,"rb") as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data

def dense_to_one_hot(labels_dense, num_classes=10):
  """Convert class labels from scalars to one-hot vectors."""
  num_labels = labels_dense.shape[0]
  index_offset = numpy.arange(num_labels) * num_classes
  labels_one_hot = numpy.zeros((num_labels, num_classes))
  labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
  return labels_one_hot

def extract_labels(filename, one_hot=False):
  """Extract the labels into a 1D uint8 numpy array [index]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2049:
      raise ValueError(
          'Invalid magic number %d in MNIST label file: %s' %
          (magic, filename))
    num_items = _read32(bytestream)
    buf = bytestream.read(num_items)
    labels = numpy.frombuffer(buf, dtype=numpy.uint8)
    if one_hot:
      return dense_to_one_hot(labels)
    return labels
class DataSet(object):
  def __init__(self, images, labels, fake_data=False):
    if fake_data:
      self._num_examples = 10000
    else:
      assert images.shape[0] == labels.shape[0], (
          "images.shape: %s labels.shape: %s" % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]
      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)

      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      # Convert from [0, 255] -> [0.0, 1.0].
      images = images.astype(numpy.float32)
      images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
  @property
  def images(self):
    return self._images
  @property
  def labels(self):
    return self._labels
  @property
  def num_examples(self):
    return self._num_examples
  @property
  def epochs_completed(self):
    return self._epochs_completed
  def next_batch(self, batch_size, fake_data=False):
    """Return the next `batch_size` examples from this data set."""
    if fake_data:
      fake_image = [1.0 for _ in xrange(784)]
      fake_label = 0
      return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)]
    start = self._index_in_epoch
    self._index_in_epoch += batch_size
    if self._index_in_epoch > self._num_examples:
      # Finished epoch
      self._epochs_completed += 1
      # Shuffle the data
      perm = numpy.arange(self._num_examples)
      numpy.random.shuffle(perm)
      self._images = self._images[perm]
      self._labels = self._labels[perm]
      # Start next epoch
      start = 0
      self._index_in_epoch = batch_size
      assert batch_size <= self._num_examples
    end = self._index_in_epoch
    return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False):
  class DataSets(object):
    pass
  data_sets = DataSets()
  if fake_data:
    data_sets.train = DataSet([], [], fake_data=True)
    data_sets.validation = DataSet([], [], fake_data=True)
    data_sets.test = DataSet([], [], fake_data=True)
    return data_sets
  TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
  TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
  TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
  TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
  VALIDATION_SIZE = 5000
  local_file = maybe_download(TRAIN_IMAGES, train_dir)
  train_images = extract_images(local_file)
  local_file = maybe_download(TRAIN_LABELS, train_dir)
  train_labels = extract_labels(local_file, one_hot=one_hot)
  local_file = maybe_download(TEST_IMAGES, train_dir)
  test_images = extract_images(local_file)
  local_file = maybe_download(TEST_LABELS, train_dir)
  test_labels = extract_labels(local_file, one_hot=one_hot)
  validation_images = train_images[:VALIDATION_SIZE]
  validation_labels = train_labels[:VALIDATION_SIZE]
  train_images = train_images[VALIDATION_SIZE:]
  train_labels = train_labels[VALIDATION_SIZE:]
  data_sets.train = DataSet(train_images, train_labels)
  data_sets.validation = DataSet(validation_images, validation_labels)
  data_sets.test = DataSet(test_images, test_labels)
  return data_sets

Softmax回归简介

Softmax通俗来说是对一个集合的每一项是否是正确答案给出一个概率,总和是1.比如0~9的数字,结果的正确答案是9,那个9的概率比如是80%,其他0~8加起来的概率总和是20%。一般用于神经网络的最后一步计算出集合的概率分布。

简单的数学表达式

softmax = normalize(exp(evidence))

其中

evidencej=jWi,jxj+bi

W:权重(针对每个像素点的加权)
x :输入(本次代表的是图片中的像素点)
b :偏移量(去除输入带来的干扰项)

矩阵表达式
tensenflow入门学习-1

Tensorflow代码

使用TensorFlow之前先导入他

import tensorflow as tf

下载导入我们的数据

mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)

定义我们的输入变量

x = tf.placeholder("float", [None, 784])

目前为止x还没有实际的值,只是通过placeholder占了一个位置,在后面Tensorflow运行的时候赋值。其中的784是因为本次MNIST的数据集图片大小是28*28=784。None表示有很多张图片,具体数量没有定死。

定义之前说过的权重和偏移量

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

Variable代表这个变量是可变的,因为在后面的训练中会对W和b进行修改。784代表一张图片的大小,10代表最后我们的输出一共有10种,即0~9。这部分也可以使用placeholder来定义。

模型实现

y = tf.nn.softmax(tf.matmul(x,W) + b)

tf.matmul代表矩阵乘法

定义与计算损失函数

损失函数是用来评估我们的模型好坏的。通俗来说就是比对预算的结果和真实结果的差距。一般采用交叉熵函数。

表达式:

Hy(y)=iyilog(yi)

其中y 是我们预测的概率分布, y’ 是实际的分布

代码:

y_ = tf.placeholder("float", [None,10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))

y_是我们预测的结果,y是实际结果
reduce_sum是元素的总和

训练函数

采用梯度下降算法,以0.01的学习速率最小化交叉熵
如果要替换其他的学习方法替换这一行代码就可以了

代码:

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

开始训练

初始化,并开始训练

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

前三行初始化,然后让模型训练1000次每次使用100张图片的数据
feed_dict中指定输入和实际结果,即最开始定义的placeholder和用来和我们预测结果进行比对的实际结果

评估我们的结果

用测试数据来评价我们的模型输入x变成了mnist.test.images而不是之前mnist.train.images

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

工程整体代码:https://github.com/larry-kof/tensorflow_study1

参考:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html

相关标签: tensorflow入门