欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ZOJ 3820 2014ACM/ICPC牡丹江司B称号

程序员文章站 2024-03-22 17:10:40
...

3797714 2014 - 10 - 12 21:58 : 19 Accepted 3820 C++ 1350 70240 zz_1215
比較麻烦的一道题吧,開始的时候不停的段异常,后面知道是爆栈了,然后用数组模拟递归,才ac了

思路挺简单的,先找到这个树的直径,单独拿出来,能够证明最后选的两个点一定是在直径上的。我就不证了

然后求出这条直径上的每一个点向外延伸的最远距离

对这个距离做两次RMQ,第一次是对于往左边计算最大距离,所以要这个距离的序列要依次+1,+2,+3.......+n-1,+n

第二次是对于往右边计算最大距离。所以序列要+n,+n-1........+3,+2,+1

然后确定一个左起点。二分右起点

最后的复杂度是O(n*log(n))

实现起来还是挺复杂的,吐槽下这样的考代码能力的题

最后有一点提醒下,向外延伸的时候不要忘了向父节点的方向延伸。由于这个我又wa了一次

#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<cassert>
#include<cstring>
#include<iomanip>
using namespace std;
#ifdef _WIN32
#define i64 __int64
#define out64 "%I64d\n"
#define in64 "%I64d"
#else
#define i64 long long
#define out64 "%lld\n"
#define in64 "%lld"
#endif
/************ for topcoder by zz1215 *******************/
#define foreach(c,itr)  for(__typeof((c).begin()) itr=(c).begin();itr!=(c).end();itr++)
#define FOR(i,a,b)      for( int i = (a) ; i <= (b) ; i ++)
#define FF(i,a)         for( int i = 0 ; i < (a) ; i ++)
#define FFD(i,a,b)      for( int i = (a) ; i >= (b) ; i --)
#define S64(a)          scanf(in64,&a)
#define SS(a)           scanf("%d",&a)
#define LL(a)           ((a)<<1)
#define RR(a)           (((a)<<1)+1)
#define pb              push_back
#define pf              push_front
#define X               first
#define Y               second
#define CL(Q)           while(!Q.empty())Q.pop()
#define MM(name,what)   memset(name,what,sizeof(name))
#define MC(a,b)		memcpy(a,b,sizeof(b))
#define MAX(a,b)        ((a)>(b)?

(a):(b)) #define MIN(a,b) ((a)<(b)?(a):(b)) #define read freopen("out.txt","r",stdin) #define write freopen("out2.txt","w",stdout) const int inf = 0x3f3f3f3f; const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL; const double oo = 10e9; const double eps = 10e-9; const double pi = acos(-1.0); const int maxn = 211111; struct Node{ int now; int to; int h; bool operator < (const Node & cmp) const{ return h>cmp.h; } }node; int n; vector<Node>g[maxn]; int dfv[maxn]; int dfn[maxn]; int t[maxn]; int h[maxn]; int df; vector<int>s; vector<int>si; bool vis[maxn]; vector<int>line; int a[maxn]; int ax[maxn][20]; int dx[maxn][20]; int lg2[maxn]; bool isline[maxn]; void dfs(){ for (int i = 1; i <= n; i++){ vis[i] = false; } df = 1; s.clear(); si.clear(); s.push_back(1); si.push_back(0); vis[1] = true; int now, to, id; while (!s.empty()){ now = s.back(); id = si.back(); if (id < g[now].size()){ to = g[now][id].to; si.back()++; if (!vis[to]){ vis[to] = true; t[to] = now; s.push_back(to); si.push_back(0); } } else{ dfv[df] = s.back(); dfn[s.back()] = df++; s.pop_back(); si.pop_back(); } } } int find_len(int now){ if (g[now].size() >= 2){ return g[now][0].h + g[now][1].h; } else if (g[now].size() == 1){ return g[now][0].h; } else{ return 0; } } void get_line(int now){ if (g[now].size() >= 2){ int t1 = g[now][0].to; int t2 = g[now][1].to; isline[now] = true; while (true){ isline[t1] = true; line.push_back(t1); if (g[t1].size() > 0){ t1 = g[t1][0].to; } else{ break; } } reverse(line.begin(), line.end()); line.push_back(now); while (true){ isline[t2] = true; line.push_back(t2); if (g[t2].size() > 0){ t2 = g[t2][0].to; } else{ break; } } } else if(g[now].size() ==1){ while (true){ isline[now] = true; line.push_back(now); if (g[now].size() > 0){ now = g[now][0].to; } else{ break; } } } } int max_way(int now){ int to; int re = 0; for (int i = 0; i < g[now].size(); i++){ to = g[now][i].to; if (!isline[to]){ re = max(re, g[now][i].h); } } return re; } void sparse_table(){ for (int i = 0; i < line.size(); i++){ ax[i][0] = a[i]+i; dx[i][0] = a[i]+(int)line.size()-1-i; } for (int step = 1; (1 << step) < line.size(); step++){ for (int i = 0; i < line.size(); i++){ ax[i][step] = ax[i][step - 1]; dx[i][step] = dx[i][step - 1]; if (i + (1 << (step - 1)) < line.size()){ ax[i][step] = max(ax[i][step], ax[i + (1 << (step - 1))][step - 1]); dx[i][step] = max(dx[i][step], dx[i + (1 << (step - 1))][step - 1]); } } } } int max_a(int l, int r){ return max(ax[l][lg2[r - l + 1]], ax[r - (1 << lg2[r - l + 1]) + 1][lg2[r - l + 1]]); } int max_d(int l, int r){ return max(dx[l][lg2[r - l + 1]], dx[r - (1 << lg2[r - l + 1]) + 1][lg2[r - l + 1]]); } int find(int l, int r){ int mid = (r + l) / 2; return max(max_a(l, mid) - l, max_d(mid+1,r)-( (int)line.size()-1-r ) ); } int back[maxn]; void find_back(){ for (int i = 1; i <= n; i++){ back[i] = 0; } queue<int>q; q.push(1); int now, to,fa,temp; while (!q.empty()){ now = q.front(); q.pop(); if (t[now]){ fa = t[now]; back[now] = 1 + back[fa]; temp = 0; if (g[fa][0].to == now){ if (g[fa].size() >= 2){ temp = g[fa][1].h+1; } } else{ temp = g[fa][0].h; } back[now] = max(back[now], temp); } for (int i = 0; i < g[now].size(); i++){ q.push(g[now][i].to); } } } void start(){ dfs(); for (int i = 1; i <= n; i++){ h[i] = 0; } vector<Node>gg; int now, to; for (now = 1; now <= n; now++){ gg.clear(); for (int i = 0; i < g[now].size(); i++){ to = g[now][i].to; if (to != t[now]){ gg.push_back(g[now][i]); } } g[now] = gg; } for (int x = 1; x < df; x++){ now = dfv[x]; for (int i = 0; i < g[now].size(); i++){ to = g[now][i].to; h[now] = max(h[now], h[to] + 1); } } for (now = 1; now <= n; now++){ for (int i = 0; i < g[now].size(); i++){ to = g[now][i].to; g[now][i].h = h[to] + 1; } } for (now = 1; now <= n; now++){ sort(g[now].begin(), g[now].end()); } int id; int len = -1; int temp; for (now = 1; now <= n; now++){ temp = find_len(now); if (temp > len){ len = temp; id = now; } } for (int i = 1; i <= n; i++){ isline[i] = false; } line.clear(); get_line(id); find_back(); for (int i = 0; i < line.size(); i++){ a[i] = max_way(line[i]); if (line[i] == id){ a[i] = max(a[i], back[id]); } } sparse_table(); int ans=inf; int left; int right; int l, r; for (int lend = 0; lend < line.size(); lend++){ l = lend; r = line.size() - 1; while (l + 2 < r){ int mid = (l + r) / 2; if (find(lend, mid) > (int)line.size() - 1 - mid){ r = mid; } else{ l = mid; } } for (int x = l; x <= r; x++){ temp = max(find(lend, x), (int)line.size() - 1 - x); temp = max(temp, lend); if (temp < ans){ ans = temp; left = lend; right = x; } } } cout << ans << " " << line[left] << " " << line[right] << endl; } int main(){ for (int i = 0; i < 20; i++){ if ((1 << i) < maxn){ lg2[1 << i] = i; } } for (int i = 3; i < maxn; i++){ if (!lg2[i]){ lg2[i] = lg2[i - 1]; } } int T; cin >> T; while (T--){ cin >> n; for (int i = 1; i <= n; i++){ g[i].clear(); } node.h = 0; for (int i = 1; i <= n - 1; i++){ // cin >> node.now >> node.to; SS(node.now); SS(node.to); g[node.now].push_back(node); swap(node.now, node.to); g[node.now].push_back(node); } start(); } return 0; }



版权声明:本文博客原创文章,博客,未经同意,不得转载。






本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/4738716.html,如需转载请自行联系原作者


上一篇: Facebook的XHP

下一篇: