欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

聚类算法之MST算法 java实现版本 博客分类: java综合web算法 算法averagelinkmst最短距离 

程序员文章站 2024-03-22 12:51:04
...
   在介绍最小生成树算法(MST)之前,简单说一下平均链接算法(average-link)的实现过程,平均链接聚类算法和单链接类似,多了计算聚类之间距离矩阵的步骤
   实现步骤如下:
    

         
  • 1,将元素各成一组,把这些组放入容器H
  •      
  • 2,循环元素距离数组,根据两层下标得到将要比较的两个元素A,B
  •      
  • 3,在H中分别查找含有A,B的组AH,BH。假如AH不等于BH(也就是A,B不同组),  AH和BH的距离累加A,B的距离。
  •      
  • 4,得到组间距离数组后,循环比较组间距离与阀值,小于阀值,则此两组合并成一组,合并之前把H中的两个作为比较的原始组删除。
  •    
       

   MST算法比较有意思点,不仅用于聚类,还可以解决最短铺路成本这类问题。
   我们假设一个场景:现在想在多个城市之间铺网络,怎样才是最短距离?每个城市当作一个数据点,每个点间的距离称为一个边,最短距离实际上就是求得每个点都能连成边,但是又不会回路的情况。
   实现过程如下:
  1,首先建立城市类和边类,如下
 
/**
 * 城市
 * 
 * @author duyf
 * 
 */
class City {

	private String name;
	// 经度
	private double x;

	// 纬度
	private double y;

	public double getX() {
		return x;
	}

	public void setX(double x) {
		this.x = x;
	}

	public double getY() {
		return y;
	}

	public void setY(double y) {
		this.y = y;
	}

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}

	public boolean equals(Object obj) {
		if (obj == null) {
			return false;
		}
		if (this == obj) {
			return true;
		}
		City other = (City) obj;
		if (this.getX() == other.getX() && this.getY() == other.getY()) {
			return true;
		}
		return false;
	}
}

/**
 * 边距 包含两端数据点(城市)的索引
 * @author duyf
 *
 */
class Edge {
    
    private int i;
    private int j;
    private double w;

    Edge(int i, int j, double w) {
        this.i = i;
        this.j = j;
        this.w = w;
    }

    public int getI() {
        return i;
    }

    public int getJ() {
        return j;
    }

    public double getW() {
        return w;
    }

}
  


2,MST核心类,Edge类表示一个边的两点和距离,
找最短距离的边的过程是:不断的纳入最短边,并且再根据这些已知的最短边的两端寻找最短边(md 这句话我也感觉绕口 但应该是最通俗的了)


public class MST {

	private List<City> data;
	
	private double[][] ds;
	
	public MST(List<City> data){
		this.data=data;
	}
	
	public List<Edge> compute(){
		// 距离矩阵
		ds = new double[data.size()][data.size()];

		for (int i = 0; i < data.size(); i++) {
			City city1 = data.get(i);
			for (int j = i + 1; j < data.size(); j++) {
				City city2 = data.get(j);
				ds[i][j] = getDistance(city1, city2);
				// 矩阵 对称性
				ds[j][i] = ds[i][j];
			}
			ds[i][i] = 0.0;
		}	

		boolean[] isMst=new boolean[data.size()];
		isMst[0]=true;
		Edge edge=null;
		List<Edge> edges=new ArrayList<Edge>();
        while((edge=findMinEdge(isMst))!=null){
        	edges.add(edge);	
        	
        	//标记为已知MST数据点
        	isMst[edge.getJ()]=true;
        }
		return edges;
		
	}
	
	//找出 和 已知的MST数据点 最小距离的点
	private Edge findMinEdge(boolean[] isMst){
		//初始化无限大
		double minds = Double.POSITIVE_INFINITY;
		int minI=-1;
		int minJ=-1;
		Edge edge=null;
		for(int i=0;i<ds.length;i++){
			if(isMst[i]==true){
				for(int j=0;j<ds.length;j++){
					if(isMst[j]==false){
					    if(minds>ds[i][j]){
					    	minds=ds[i][j];
					    	minI=i;
					    	minJ=j;
						}
					}
				}
			}
		}
		if(minI>-1){
			edge=new Edge(minI,minJ,minds);
		}
		return edge;
	}
	
	// 计算空间距离
	private double getDistance(City city1, City city2) {
		 double  distance=Math.pow(city1.getX()-city2.getX(),2)+Math.pow(city1.getY()-city2.getY(),2);
		 return Math.sqrt(distance);
		 
	}
	
	
}


第一步肯定是算出临近距离矩阵

3,测试一下
public static void main(String[] args) {
		List<City> citys = new ArrayList<City>();

		City city0 = new City();
		city0.setName("北 京");
		city0.setX(116.28);
		city0.setY(39.54);
		citys.add(city0);
		
		City city1 = new City();
		city1.setName("上 海");
		city1.setX(121.29);
		city1.setY(31.14);
		citys.add(city1);

		City city2 = new City();
		city2.setName("天 津");
		city2.setX(117.11);
		city2.setY(39.09);
		citys.add(city2);

		City city3 = new City();
		city3.setName("重 庆");
		city3.setX(106.32);
		city3.setY(29.32);
		citys.add(city3);

		City city4 = new City();
		city4.setName("哈尔滨");
		city4.setX(126.41);
		city4.setY(45.45);
		citys.add(city4);

		City city5 = new City();
		city5.setName("长 春");
		city5.setX(125.19);
		city5.setY(43.52);
		citys.add(city5);

		City city6 = new City();
		city6.setName("南 京");
		city6.setX(118.50);
		city6.setY(32.02);
		citys.add(city6);

		City city7 = new City();
		city7.setName("武 汉");
		city7.setX(114.21);
		city7.setY(30.37);
		citys.add(city7);

		City city8 = new City();
		city8.setName("台 北");
		city8.setX(121.31);
		city8.setY(25.03);
		citys.add(city8);

		City city9 = new City();
		city9.setName("香 港");
		city9.setX(114.10);
		city9.setY(22.18);
		citys.add(city9);
		
		MST mst=new MST(citys);
		List<Edge> edges=mst.compute();
		
		System.out.println("------------------线路最佳方案如下------------------");
		for(Edge edge:edges){
			City from=citys.get(edge.getI());
			City to=citys.get(edge.getJ());
			double length=edge.getW();
			System.out.println(edge.getI()+"========>"+edge.getJ());
			System.out.println(from.getName()+"到"+to.getName()+",全长"+length);
		}

	}


聚类算法之MST算法 java实现版本
            
    
    博客分类: java综合web算法 算法averagelinkmst最短距离 

By 阿飞哥 转载请说明
腾讯微博:http://t.qq.com/duyunfeiRoom
新浪微博:http://weibo.com/u/1766094735