给定一个多项式和m个x,求相应的y
我们把需要求值的点均分成两个集合S1,S2,构造两个多项式P1,P2,使得这两个多项式分别为这两个集合的零点。则多项式A%P1对于S1满足A%P1对S1内元素求值和A相同,A%P2对于S2内求值和A相同,而它们次数都是n/2,分治递归下去继续求值即可。
由于多项式取模的数组版还不会写,这里借用的以前的vector版,有非常大的优化空间(vector真香)
#include <bits/stdc++.h>
using namespace std;
const int p = 998244353;
int qpow(int x, int y)
{
int res = 1;
while (y > 0)
{
if (y & 1)
res = 1LL * res * x % p;
x = 1LL * x * x % p;
y >>= 1;
}
return res;
}
void FNTT(vector<int> &A, int len, int flag)
{
A.resize(len);
int *r = new int[len];
r[0] = 0;
for (int i = 0; i < len; i++)
r[i] = (r[i >> 1] >> 1) | ((i & 1) * (len >> 1));
for (int i = 0; i < len; i++)
if (i < r[i])
swap(A[i], A[r[i]]);
int gn, g, t, A0, A1;
for (int i = 1; i < len; i <<= 1)
{
gn = qpow(3, (p - 1) / (i * 2));
for (int j = 0; j < len; j += (i << 1))
{
g = 1;
A0 = j;
A1 = A0 + i;
for (int k = 0; k < i; k++, A0++, A1++, g = (1LL * g * gn) % p)
{
t = (1LL * A[A1] * g) % p;
A[A1] = ((A[A0] - t) % p + p) % p;
A[A0] = (A[A0] + t) % p;
}
}
}
if (flag == -1)
{
reverse(A.begin() + 1, A.end());
int inv = qpow(len, p - 2);
for (int i = 0; i < len; i++)
A[i] = 1LL * A[i] * inv % p;
}
delete []r;
}
vector<int> operator*(vector<int> a, vector<int> b)
{
int len = 1;
int sz = a.size() + b.size() - 1;
while (len <= sz) len <<= 1;
FNTT(a, len, 1);
FNTT(b, len, 1);
vector<int> res;
res.resize(len);
for (int i = 0; i < len; i++)
res[i] = 1LL * a[i] * b[i] % p;
FNTT(res, len, -1);
res.resize(sz);
return res;
}
vector<int> poly_inv(vector<int> a)
{
if (a.size() == 1)
{
a[0] = qpow(a[0], p - 2);
return a;
}
int n = a.size(), newsz = (n + 1) >> 1;
vector<int> b(a);
b.resize(newsz);
b = poly_inv(b);
int len = 1;
while (len <= (n << 1)) len <<= 1;
vector<int> c(a);
FNTT(a, len, 1);
FNTT(b, len, 1);
for (int i = 0; i < len; i++)
a[i] = ((1LL * b[i] * (2 - 1LL * a[i] * b[i] % p)) % p + p) % p;
FNTT(a, len, -1);
a.resize(n);
return a;
}
vector<int> poly_r(vector<int> a)
{
reverse(a.begin(), a.end());
return a;
}
void div(vector<int> f, vector<int> g, vector<int> &q, vector<int> &r)
{
int n = f.size() - 1, m = g.size() - 1;
vector<int> gr = poly_r(g);
gr.resize(n - m + 1);
q = poly_r(f) * poly_inv(gr);
q.resize(n - m + 1);
q = poly_r(q);
vector<int> gq = g * q;
r.resize(m);
gq.resize(m);
f.resize(m);
for (int i = 0; i < m; i++)
r[i] = ((f[i] - gq[i]) % p + p) % p;
}
int n, m;
vector<int> f, tmp[1000010];
int a[100010], res[100010], le[1000010], re[1000010], tot;
vector<int> prework(int l, int r)
{
int id = ++tot;
if (l == r)
{
vector<int> res;
res.push_back(p - a[l]);
res.push_back(1);
tmp[id] = res;
return res;
}
int mid = (l + r) / 2;
le[id] = tot + 1;
vector<int> res = prework(l, mid);
re[id] = tot + 1;
res = res * prework(mid + 1, r);
return tmp[id] = res;
}
void work(int l, int r, vector<int> sb)
{
int id = ++tot;
if (l == r)
{
int tmp = 1;
for (int i = 0; i < (int)sb.size(); i++)
res[l] = (res[l] + tmp * sb[i]) % p, tmp = tmp * (long long)a[l] % p;
return;
}
vector<int> fl = tmp[le[id]], fr = tmp[re[id]];
vector<int> tmp1, rel, rer;
div(sb, fl, tmp1, rel);
div(sb, fr, tmp1, rer);
int mid = (l + r) / 2;
work(l, mid, rel);
work(mid + 1, r, rer);
}
int main()
{
scanf("%d%d", &n, &m); f.resize(n + 1);
for (int i = 0; i <= n; i++) scanf("%d", &f[i]);
for (int i = 1; i <= m; i++) scanf("%d", &a[i]);
prework(1, max(n, m));
tot = 0;
work(1, max(n, m), f);
for (int i = 1; i <= m; i++) printf("%d\n", res[i]);
return 0;
}