欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

深度卷积生成对抗网络(DCGAN)来生成对抗图像

程序员文章站 2024-03-21 18:57:58
...

DCGAN

实现深度卷积生成对抗网络(DCGAN)来生成对抗图像

图来源网络
深度卷积生成对抗网络(DCGAN)来生成对抗图像

main.py

import  os
import  numpy as np
import  tensorflow as tf
from    tensorflow import keras
from    scipy.misc import toimage

from    gen import Generator, Discriminator



def save_result(val_out, val_block_size, image_fn, color_mode):
    def preprocess(img):
        img = ((img + 1.0) * 127.5).astype(np.uint8)
        return img

    preprocesed = preprocess(val_out)
    final_image = np.array([])
    single_row = np.array([])
    for b in range(val_out.shape[0]):
        # concat image into a row
        if single_row.size == 0:
            single_row = preprocesed[b, :, :, :]
        else:
            single_row = np.concatenate((single_row, preprocesed[b, :, :, :]), axis=1)

        # concat image row to final_image
        if (b+1) % val_block_size == 0:
            if final_image.size == 0:
                final_image = single_row
            else:
                final_image = np.concatenate((final_image, single_row), axis=0)

            # reset single row
            single_row = np.array([])

    if final_image.shape[2] == 1:
        final_image = np.squeeze(final_image, axis=2)
    toimage(final_image, mode=color_mode).save(image_fn)


# shorten sigmoid cross entropy loss calculation
def celoss_ones(logits, smooth=0.0):
    return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,
                                                                  labels=tf.ones_like(logits)*(1.0 - smooth)))


def celoss_zeros(logits, smooth=0.0):
    return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,
                                                                  labels=tf.zeros_like(logits)*(1.0 - smooth)))




def d_loss_fn(generator, discriminator, input_noise, real_image, is_trainig):
    fake_image = generator(input_noise, is_trainig)
    d_real_logits = discriminator(real_image, is_trainig)
    d_fake_logits = discriminator(fake_image, is_trainig)

    d_loss_real = celoss_ones(d_real_logits, smooth=0.1)
    d_loss_fake = celoss_zeros(d_fake_logits, smooth=0.0)
    loss = d_loss_real + d_loss_fake
    return loss


def g_loss_fn(generator, discriminator, input_noise, is_trainig):
    fake_image = generator(input_noise, is_trainig)
    d_fake_logits = discriminator(fake_image, is_trainig)
    loss = celoss_ones(d_fake_logits, smooth=0.1)
    return loss





def main():

    tf.random.set_seed(22)
    np.random.seed(22)
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    assert tf.__version__.startswith('2.')


    # hyper parameters
    z_dim = 100
    epochs = 3000000
    batch_size = 128
    learning_rate = 0.0002
    is_training = True

    # for validation purpose
    assets_dir = './images'
    if not os.path.isdir(assets_dir):
        os.makedirs(assets_dir)
    val_block_size = 10
    val_size = val_block_size * val_block_size

    # load mnist data
    (x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
    x_train = x_train.astype(np.float32) / 255.
    db = tf.data.Dataset.from_tensor_slices(x_train).shuffle(batch_size*4).batch(batch_size).repeat()
    db_iter = iter(db)
    inputs_shape = [-1, 28, 28, 1]


    # create generator & discriminator
    generator = Generator()
    generator.build(input_shape=(batch_size, z_dim))
    generator.summary()
    discriminator = Discriminator()
    discriminator.build(input_shape=(batch_size, 28, 28, 1))
    discriminator.summary()

    # prepare optimizer
    d_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)
    g_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)


    for epoch in range(epochs):


        # no need labels
        batch_x = next(db_iter)

        # rescale images to -1 ~ 1
        batch_x = tf.reshape(batch_x, shape=inputs_shape)
        # -1 - 1
        batch_x = batch_x * 2.0 - 1.0

        # Sample random noise for G
        batch_z = tf.random.uniform(shape=[batch_size, z_dim], minval=-1., maxval=1.)


        with tf.GradientTape() as tape:
            d_loss = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training)
        grads = tape.gradient(d_loss, discriminator.trainable_variables)
        d_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))

        with tf.GradientTape() as tape:
            g_loss = g_loss_fn(generator, discriminator, batch_z, is_training)
        grads = tape.gradient(g_loss, generator.trainable_variables)
        g_optimizer.apply_gradients(zip(grads, generator.trainable_variables))



        if epoch % 100 == 0:

            print(epoch, 'd loss:', float(d_loss), 'g loss:', float(g_loss))

            # validation results at every epoch
            val_z = np.random.uniform(-1, 1, size=(val_size, z_dim))
            fake_image = generator(val_z, training=False)
            image_fn = os.path.join('images', 'gan-val-{:03d}.png'.format(epoch + 1))
            save_result(fake_image.numpy(), val_block_size, image_fn, color_mode='L')




if __name__ == '__main__':
    main()

 

gen.py

import  tensorflow as tf
from    tensorflow import keras


class Generator(keras.Model):

    def __init__(self):
        super(Generator, self).__init__()

        self.n_f = 512
        self.n_k = 4

        # input z vector is [None, 100]
        self.dense1 = keras.layers.Dense(3 * 3 * self.n_f)
        self.conv2 = keras.layers.Conv2DTranspose(self.n_f // 2, 3, 2, 'valid')
        self.bn2 = keras.layers.BatchNormalization()
        self.conv3 = keras.layers.Conv2DTranspose(self.n_f // 4, self.n_k, 2, 'same')
        self.bn3 = keras.layers.BatchNormalization()
        self.conv4 = keras.layers.Conv2DTranspose(1, self.n_k, 2, 'same')
        return

    def call(self, inputs, training=None):
        # [b, 100] => [b, 3, 3, 512]
        x = tf.nn.leaky_relu(tf.reshape(self.dense1(inputs), shape=[-1, 3, 3, self.n_f]))
        x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))
        x = tf.nn.leaky_relu(self.bn3(self.conv3(x), training=training))
        x = tf.tanh(self.conv4(x))
        return x


class Discriminator(keras.Model):

    def __init__(self):
        super(Discriminator, self).__init__()

        self.n_f = 64
        self.n_k = 4

        # input image is [-1, 28, 28, 1]
        self.conv1 = keras.layers.Conv2D(self.n_f, self.n_k, 2, 'same')
        self.conv2 = keras.layers.Conv2D(self.n_f * 2, self.n_k, 2, 'same')
        self.bn2 = keras.layers.BatchNormalization()
        self.conv3 = keras.layers.Conv2D(self.n_f * 4, self.n_k, 2, 'same')
        self.bn3 = keras.layers.BatchNormalization()
        self.flatten4 = keras.layers.Flatten()
        self.dense4 = keras.layers.Dense(1)
        return

    def call(self, inputs, training=None):
        x = tf.nn.leaky_relu(self.conv1(inputs))
        x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))
        x = tf.nn.leaky_relu(self.bn3(self.conv3(x), training=training))
        x = self.dense4(self.flatten4(x))
        return x