欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

tensorflow模拟仿真 博客分类: tensorflow tensorflow 

程序员文章站 2024-03-21 09:16:17
...
TensorFlow 不仅仅是用来机器学习,它更可以用来模拟仿真。在这里,我们将通过模拟仿真几滴落入一块方形水池的雨点的例子,来引导您如何使用 TensorFlow 中的偏微分方程来模拟仿真的基本使用方法。

参考http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/pdes.html

https://*.com/questions/28237210/image-does-not-display-in-ipython/42567537?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
代码运行不了
修改如下

yum install libpng-devel freetype-devel   -y
yum install tcl tk tix-devel -y
yum install tk-devel tcl-devel -y
yum -y install tkinter
 



virtualenv pianweifen

pip install --upgrade pip
#pip-10.0.1
pip install tensorflow
pip install matplotlib
pip install pillow

pip install ipython
pip install scipy



把display(Image(data=f.getvalue()))
改成
  scipy.misc.imsave("testimg.jpg", a)
  image = PIL.Image.open("testimg.jpg")
  image.show()

# encoding: utf-8
#导入模拟仿真需要的库
import tensorflow as tf
import numpy as np
import  matplotlib.pyplot as plt
#导入可视化需要的库
import PIL.Image
from cStringIO import StringIO
#from io import BytesIO
import scipy.misc
from IPython.display import clear_output, Image, display

def DisplayArray(a, fmt='jpeg', rng=[0,1]):
  """Display an array as a picture."""
  a = (a - rng[0])/float(rng[1] - rng[0])*255
  a = np.uint8(np.clip(a, 0, 255))
  f = StringIO()
  # f = BytesIO()
  PIL.Image.fromarray(a).save(f, fmt)
 # display(Image(data=f.getvalue()))
  scipy.misc.imsave("testimg.jpg", a)
  image = PIL.Image.open("testimg.jpg")
  image.show()
#def DisplayArray(a, rng=[0 ,1]):
#    plt.ion()
#    a = (a - rng[0])/float(rng[1]-rng[0])*255
#    a = np.uint8(np.clip(a, 0, 255))
#    print(a)
#    plt.imshow(a, cmap='gray')
#    plt.pause(1)
#    plt.close()
sess = tf.InteractiveSession()

def make_kernel(a):
    """Transform a 2D array into a convolution kernel"""
    a = np.asarray(a)
    a = a.reshape(list(a.shape) + [1,1])
    return tf.constant(a, dtype=1)

def simple_conv(x, k):
  """A simplified 2D convolution operation"""
  x = tf.expand_dims(tf.expand_dims(x, 0), -1)
  y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
  return y[0, :, :, 0]

def laplace(x):
  """Compute the 2D laplacian of an array"""
  laplace_k = make_kernel([[0.5, 1.0, 0.5],
                           [1.0, -6., 1.0],
                           [0.5, 1.0, 0.5]])
  return simple_conv(x, laplace_k)

N = 500

# Initial Conditions -- some rain drops hit a pond

# Set everything to zero
u_init = np.zeros([N, N], dtype="float32")
ut_init = np.zeros([N, N], dtype="float32")

# Some rain drops hit a pond at random points
for n in range(40):
  a,b = np.random.randint(0, N, 2)
  u_init[a,b] = np.random.uniform()

DisplayArray(u_init, rng=[-0.1, 0.1])


]
python hello.py
tensorflow模拟仿真
            
    
    博客分类: tensorflow tensorflow 


完整版还不完美的图片闪现的版本
# encoding: utf-8
#导入模拟仿真需要的库
import tensorflow as tf
import numpy as np
import  matplotlib.pyplot as plt
#导入可视化需要的库
import PIL.Image
from cStringIO import StringIO
#from io import BytesIO
import scipy.misc
from IPython.display import clear_output, Image, display

def DisplayArray(a, fmt='jpeg', rng=[0,1]):
    """Display an array as a picture."""
    a = (a - rng[0])/float(rng[1] - rng[0])*255
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    # f = BytesIO()
    PIL.Image.fromarray(a).save(f, fmt)
    #display(Image(data=f.getvalue()))
    scipy.misc.imsave("testimg.jpg", a)
    image = PIL.Image.open("testimg.jpg")
    image.show()
sess = tf.InteractiveSession()

def make_kernel(a):
    """Transform a 2D array into a convolution kernel"""
    a = np.asarray(a)
    a = a.reshape(list(a.shape) + [1,1])
    return tf.constant(a, dtype=1)

def simple_conv(x, k):
    """A simplified 2D convolution operation"""
    x = tf.expand_dims(tf.expand_dims(x, 0), -1)
    y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
    return y[0, :, :, 0]

def laplace(x):
    """Compute the 2D laplacian of an array"""
    laplace_k = make_kernel([[0.5, 1.0, 0.5],
                             [1.0, -6., 1.0],
                             [0.5, 1.0, 0.5]])
    return simple_conv(x, laplace_k)

N = 500

# Initial Conditions -- some rain drops hit a pond

# Set everything to zero
u_init = np.zeros([N, N], dtype="float32")
ut_init = np.zeros([N, N], dtype="float32")

# Some rain drops hit a pond at random points
for n in range(40):
    a,b = np.random.randint(0, N, 2)
    u_init[a,b] = np.random.uniform()

DisplayArray(u_init, rng=[-0.1, 0.1])


eps = tf.placeholder(tf.float32, shape=())
damping = tf.placeholder(tf.float32, shape=())

# Create variables for simulation state
U  = tf.Variable(u_init)
Ut = tf.Variable(ut_init)

# Discretized PDE update rules
U_ = U + eps * Ut
Ut_ = Ut + eps * (laplace(U) - damping * Ut)

# Operation to update the state
step = tf.group(
    U.assign(U_),
    Ut.assign(Ut_))
# Initialize state to initial conditions
tf.initialize_all_variables().run()

# Run 1000 steps of PDE
for i in range(1000):
    # Step simulation
    step.run({eps: 0.03, damping: 0.04})
    # Visualize every 50 steps
    if i % 50 == 0:
        clear_output()
        DisplayArray(U.eval(), rng=[-0.1, 0.1])

  • tensorflow模拟仿真
            
    
    博客分类: tensorflow tensorflow 
  • 大小: 188.3 KB
相关标签: tensorflow