欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

DRDS到MaxCompute(原ODPS)数据归档性能优化测试

程序员文章站 2024-03-21 09:08:10
...

摘要: cdp同步基本原理 数据集成(Data Integration)是阿里巴巴集团提供的数据同步平台。该平台具备可跨异构数据存储系统、可靠、安全、低成本、可弹性扩展等特点,可为 20 多种数据源提供不同网络环境下的离线(全量/增量)数据进出通道。

一、cdp同步基本原理


数据集成(Data Integration)是阿里巴巴集团提供的数据同步平台。该平台具备可跨异构数据存储系统、可靠、安全、低成本、可弹性扩展等特点,可为 20 多种数据源提供不同网络环境下的离线(全量/增量)数据进出通道。数据源类型的详情请参见 支持数据源类型。


数据集成的原理:
数据集成在阿里云上提供一套分布式离线数据同步平台,同时提供一套抽象化的数据抽取插件(称之为Reader)、数据写入插件(称之为Writer),并基于此框架设计一套简化版的中间数据传输格式,从而达到任意结构化、半结构化数据源之间数据传输之目的。从用户角度来看,一个数据集成同步任务运行Job示意图如下所示:


DRDS到MaxCompute(原ODPS)数据归档性能优化测试

上述中,红色虚箭头是代表通过collector状态收集器监控数据返回到脏数据管理服务器进行数据分析,灰色方向箭头代表数据流向。DI Service主要是包含资源管理器、Job管理器、脏数据管理器、分布式服务、鉴权服务等。Job Container主要是将数据集成运行任务分成若干个task,然后通过scheduler调度管理。TaskGroup Container主要是数据抽取通过数据通道(channel)将数据写入。


• 使用数据集成Job启动API,向数据集成服务端发起调用,提交一个离线数据同步Job。
• 数据集成收到Job API请求后,将负责做必要的安全和权限校验,待校验通过后,数据集成会下发相应的Job到执行集群节点启动离线数据同步任务。
• Job启动后,根据您提供的源端(Reader)、目的端(Writer)的配置信息,加载并初始化相关插件,连接两端数据源,开始数据同步工作。
• Job运行过程中,将随心跳向数据集成汇报当前进度、速度、数据量等关键运行指标,可根据Job的状态API实时获取该Job运行状态,直至Job运行结束(成功或者失败)。

流程概述


DRDS到MaxCompute(原ODPS)数据归档性能优化测试

步骤1:数据源端新建表。
步骤2:新增数据源。
步骤3:向导模式或脚本模式配置同步任务。
步骤4:运行同步任务,检查目标端的数据质量。

因为DRDS不支持存储过程,造一张实际生产的表有些复杂,所以采用通过RDS创建表数据,再导入到DRDS的方式

二、测试表准备:


通过RDS新建一张实际生产的表,数据量为一亿行左右(主键为自增)
通过存储结构插入数据(业务只需要天数是随机的):
delimiter

dropprocedurehuayu2;CREATEPROCEDUREhuayu2()begindeclarevarint;setvar=0;whilevar<100000000doinsertintotpcsbillrecievehuayutestselectnull,1234567,210025002110010114117029000016,0,null,0,null,null,null,0,0,null,null,0,null,null,null,21100101,null,null,null,null,null,null,null,21002500,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,CONCAT(2018,,03,,LPAD(FLOOR(1+(RAND()31)),2,0),′′,14:54:04),null,null,2017111014:54:04,null,null,null,2,4,null,null,null,null,null,0,null,null,null,null,null;setvar=var+1;endwhile;enddropprocedurehuayu2;CREATEPROCEDUREhuayu2()begindeclarevarint;setvar=0;whilevar<100000000doinsertintotpcsbillrecievehuayutestselectnull,1234567,210025002110010114117029000016,0,null,0,null,null,null,0,0,null,null,0,null,null,null,21100101,null,null,null,null,null,null,null,21002500,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,CONCAT(2018,′−′,′03′,′−′,LPAD(FLOOR(1+(RAND()∗31)),2,0),″,′14:54:04′),null,null,′2017−11−1014:54:04′,null,null,null,2,4,null,null,null,null,null,0,null,null,null,null,null;setvar=var+1;endwhile;end

delimiter

三、测试要求


通过mysqldump在DRDS新建导入的表,以天为分表键,分表键的值是随机分布在3月1日-3月31日的。
将源表按分表键做拆分,1天拆成1个任务,并发向目标表里进行同步,同时目标表按天做分区,找到最佳并发量。
注意:分库键的选择为自增主键,不能是固定,否则hash的时候只落在一个库里面,分表键也是随机的日期,这样数据就能均衡的分布在各个库里面

四、具体实施步骤


1、将RDS的表导入到测试环境DRDS
mysqldump –urds_xncs_qps8 –p –P3306 –h 10.1.1.1 database test1 –t > /home/hy.sql

这里加上了-t参数,目的是不备份表的结构,这样做的好处是,导入到DRDS的时候,在DRDS端建一个相同名字的数据库,并且可以自定义分库分表键,这样就省略了再次去修改备份的.sql文件而达到分库分表的目的。当然,如果只是需要一个单表,那就复制表结构跟数据就好了


2、 将复制的表数据导入到DRDS

2.1、 通过mysql -udrds_uat_pcs –P3306 –h10.3.3.3 drds_uat_pcs -p < /home/hy.slq

2.2、 进入到目标表所在的数据库,执行source /home/hy.sql
这两种方式大同小异,第一种稍微快些,第二种会有过程在屏幕上展示。习惯用第二种

在刚开始导入的时候会一些报错,但是对实际的导入不会影响

3、具体测试
数据量:

mysql> select count(*) from t_pcs_bill_recieve_huayutest ;
count(*)
78322075

1、 一个工作流,分十个同步任务执行,
每个同步任务where条件对应3天,每一个同步任务对应一个分区,共10个分区
最大速率上线10M/s,
结构图:

DRDS到MaxCompute(原ODPS)数据归档性能优化测试


各个任务耗时:
1、========================================================================
任务启动时刻 : 2018-03-28 11:47:15 任务结束时刻 : 2018-03-28 11:57:28 任务总计耗时 : 612s 任务平均流量 : 1.69MB/s 记录写入速度 : 20753rec/s 读出记录总数 : 12638734 读写失败总数 : 0

2、========================================================================
任务启动时刻 : 2018-03-28 11:47:15 任务结束时刻 : 2018-03-28 11:56:18 任务总计耗时 : 543s 任务平均流量 : 1.14MB/s 记录写入速度 : 14038rec/s 读出记录总数 : 7580943 读写失败总数 : 0

3、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:56:23 任务总计耗时 : 545s 任务平均流量 : 1.14MB/s 记录写入速度 : 14004rec/s 读出记录总数 : 7576202 读写失败总数 : 0

4、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:56:26 任务总计耗时 : 548s 任务平均流量 : 1.13MB/s 记录写入速度 : 13933rec/s 读出记录总数 : 7579645 读写失败总数 : 0

5、========================================================================
任务启动时刻 : 2018-03-28 11:47:10 任务结束时刻 : 2018-03-28 11:56:17 任务总计耗时 : 546s 任务平均流量 : 1.14MB/s 记录写入速度 : 13979rec/s 读出记录总数 : 7576799 读写失败总数 : 0

6、========================================================================
任务启动时刻 : 2018-03-28 11:47:15 任务结束时刻 : 2018-03-28 11:56:28 任务总计耗时 : 553s 任务平均流量 : 1.12MB/s 记录写入速度 : 13774rec/s 读出记录总数 : 7575981 读写失败总数 : 0

7、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:56:18 任务总计耗时 : 541s 任务平均流量 : 1.15MB/s 记录写入速度 : 14115rec/s 读出记录总数 : 7579924 读写失败总数 : 0

8、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:56:18 任务总计耗时 : 541s 任务平均流量 : 1.15MB/s 记录写入速度 : 14115rec/s 读出记录总数 : 7579924 读写失败总数 : 0


9、========================================================================
任务启动时刻 : 2018-03-28 11:47:15 任务结束时刻 : 2018-03-28 11:56:27 任务总计耗时 : 551s 任务平均流量 : 1.13MB/s 记录写入速度 : 13856rec/s 读出记录总数 : 7579604 读写失败总数 : 0

10、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:55:20 任务总计耗时 : 482s 任务平均流量 : 877.38KB/s 记录写入速度 : 10522rec/s 读出记录总数 : 5050713 读写失败总数 : 0

整体耗时:630秒

 ![image](https://yqfile.alicdn.com/8d8f3acb4098f6860aa698d56277bcdbf9c4f975.png)


2、 一个工作流,分五个同步任务执行,
每个同步任务where条件对应6天,每一个同步任务对应一个分区,共5个分区
最大速率上线10M/s,
结构图:

DRDS到MaxCompute(原ODPS)数据归档性能优化测试

任务同步耗时:

1、========================================================================
任务启动时刻 : 2018-03-28 14:27:49 任务结束时刻 : 2018-03-28 14:37:42 任务总计耗时 : 593s 任务平均流量 : 2.09MB/s 记录写入速度 : 25605rec/s 读出记录总数 : 15158472 读写失败总数 : 0

2、========================================================================
任务启动时刻 : 2018-03-28 14:27:53 任务结束时刻 : 2018-03-28 14:37:36 任务总计耗时 : 583s 任务平均流量 : 2.12MB/s 记录写入速度 : 26093rec/s 读出记录总数 : 15160230 读写失败总数 : 0

3、========================================================================
任务启动时刻 : 2018-03-28 14:27:43 任务结束时刻 : 2018-03-28 14:37:33 任务总计耗时 : 589s 任务平均流量 : 2.10MB/s 记录写入速度 : 25775rec/s 读出记录总数 : 15156082 读写失败总数 : 0

4、========================================================================
任务启动时刻 : 2018-03-28 14:27:45 任务结束时刻 : 2018-03-28 14:37:36 任务总计耗时 : 591s 任务平均流量 : 2.10MB/s 记录写入速度 : 25729rec/s 读出记录总数 : 15154873 读写失败总数 : 0

5、========================================================================
任务启动时刻 : 2018-03-28 14:27:43 任务结束时刻 : 2018-03-28 14:38:01 任务总计耗时 : 617s 任务平均流量 : 2.34MB/s 记录写入速度 : 28768rec/s 读出记录总数 : 17692418 读写失败总数 : 0

整体耗时:629秒

DRDS到MaxCompute(原ODPS)数据归档性能优化测试

3、 一个工作流,分十五个同步任务执行,
每个同步任务where条件对应2天,每一个同步任务对应一个分区,共15个分区
最大速率上线10M/s,
结构图:

 ![image](https://yqfile.alicdn.com/068c1c56b16baa1c3cc270eb286f7d46ff1a8990.png)

总体耗时:623秒

DRDS到MaxCompute(原ODPS)数据归档性能优化测试

4、 一个工作流,分一个同步任务执行
最大速率上线10M/s,
结构图:
DRDS到MaxCompute(原ODPS)数据归档性能优化测试

同步任务耗时:
任务启动时刻 : 2018-03-28 15:42:05 任务结束时刻 : 2018-03-28 15:57:16 任务总计耗时 : 910s 任务平均流量 : 7.02MB/s 记录写入速度 : 86257rec/s 读出记录总数 : 78322075 读写失败总数 : 0

总耗时:928秒
DRDS到MaxCompute(原ODPS)数据归档性能优化测试

5、 一个工作流,分三个同步任务执行
最大速率上线10M/s,
结构图:

DRDS到MaxCompute(原ODPS)数据归档性能优化测试

总耗时:699秒

DRDS到MaxCompute(原ODPS)数据归档性能优化测试

6、 一个工作流,分四个同步任务执行
最大速率上线10M/s,
结构图:

DRDS到MaxCompute(原ODPS)数据归档性能优化测试

总耗时:672秒
DRDS到MaxCompute(原ODPS)数据归档性能优化测试

测试结果:

                            
并发数    10        5        15       1        3       4    
总耗时    630秒    629秒    623秒    928秒    699秒    672秒    
                            
                            
并发数    1         3        4        5        10       15    
总耗时    928秒    699秒    672秒    629秒    630秒    623秒    
                            


初步结论:
在并发为5、10、15的情况下,同步数据的速率基本没有变化630秒左右,在并发为1、2、3、4的情况下,速率由930秒提升到630秒左右,从而可以得出结论,在并发为5的情况下,同步速率已经达到最大,再增加并发对于速率的增加效果不明显。

原文链接

阅读更多干货好文,请关注扫描以下二维码:

DRDS到MaxCompute(原ODPS)数据归档性能优化测试


相关标签: 测试 数据同步