机器学习模型及其算法(线性回归)
程序员文章站
2024-03-20 23:58:40
...
1.线性回归模型
最小二乘法代码实现:
import numpy as np
import matplotlib.pyplot as plt
1.导入数据
points = np.genfromtxt('data.csv', delimiter=',')
points[0,0]
# 提取points中的两列数据,分别作为x,y
x = points[:, 0]
y = points[:, 1]
# 用plt画出散点图
plt.scatter(x, y)
plt.show()
2.定义损失函数
# 损失函数是系数的函数,另外还要传入数据的x,y
def compute_cost(w, b, points):
total_cost = 0
M = len(points)
# 逐点计算平方损失误差,然后求平均数
for i in range(M):
x = points[i, 0]
y = points[i, 1]
total_cost += ( y - w * x - b ) ** 2
return total_cost/M
3.定义算法拟合函数
# 先定义一个求均值的函数
def average(data):
sum = 0
num = len(data)
for i in range(num):
sum += data[i]
return sum/num
# 定义核心拟合函数
def fit(points):
M = len(points)
x_bar = average(points[:, 0])
sum_yx = 0
sum_x2 = 0
sum_delta = 0
for i in range(M):
x = points[i, 0]
y = points[i, 1]
sum_yx += y * ( x - x_bar )
sum_x2 += x ** 2
# 根据公式计算w
w = sum_yx / ( sum_x2 - M * (x_bar**2) )
for i in range(M):
x = points[i, 0]
y = points[i, 1]
sum_delta += ( y - w * x )
b = sum_delta / M
return w, b
4.测试
w, b = fit(points)
print("w is: ", w)
print("b is: ", b)
cost = compute_cost(w, b, points)
print("cost is: ", cost)
w is: 1.3224310227553846
b is: 7.991020982269173
cost is: 110.25738346621313
5.画出拟合曲线
plt.scatter(x, y)
# 针对每一个x,计算出预测的y值
pred_y = w * x + b
plt.plot(x, pred_y, c='r')
plt.show()
使用梯度下降法实现线性回归
4.定义模型超参数
alpha = 0.0001
initial_w = 0
initial_b = 0
num_iter = 10
5.定义核心梯度下降算法
def grad_desc(points, initial_w, initial_b, alpha, num_iter):
w = initial_w
b = initial_b
# 定义一个list保存所有的损失函数值,用来显示下降的过程
cost_list = []
for i in range(num_iter):
cost_list.append( compute_cost(w, b, points) )
w, b = step_grad_desc( w, b, alpha, points )
return [w, b, cost_list]
def step_grad_desc( current_w, current_b, alpha, points ):
sum_grad_w = 0
sum_grad_b = 0
M = len(points)
# 对每个点,代入公式求和
for i in range(M):
x = points[i, 0]
y = points[i, 1]
sum_grad_w += ( current_w * x + current_b - y ) * x
sum_grad_b += current_w * x + current_b - y
# 用公式求当前梯度
grad_w = 2/M * sum_grad_w
grad_b = 2/M * sum_grad_b
# 梯度下降,更新当前的w和b
updated_w = current_w - alpha * grad_w
updated_b = current_b - alpha * grad_b
return updated_w, updated_b
6.测试
w, b, cost_list = grad_desc( points, initial_w, initial_b, alpha, num_iter )
print("w is: ", w)
print("b is: ", b)
cost = compute_cost(w, b, points)
print("cost is: ", cost)
plt.plot(cost_list)#默认使用轮次的索引作为x轴的表示
plt.show()
调用sklearn库完成线性回归
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
x_new = x.reshape(-1, 1)#-1是无所谓多少行,1是表示1列,变成矩阵的形式
y_new = y.reshape(-1, 1)
lr.fit(x_new, y_new)
# 从训练好的模型中提取系数和截距
w = lr.coef_[0][0]
b = lr.intercept_[0]
print("w is: ", w)
print("b is: ", b)
cost = compute_cost(w, b, points)
print("cost is: ", cost)