欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

机器学习模型及其算法(线性回归)

程序员文章站 2024-03-20 23:58:40
...

1.线性回归模型

机器学习模型及其算法(线性回归)
机器学习模型及其算法(线性回归)

最小二乘法代码实现:

import numpy as np
import matplotlib.pyplot as plt

1.导入数据

points = np.genfromtxt('data.csv', delimiter=',')
points[0,0]
# 提取points中的两列数据,分别作为x,y
x = points[:, 0]
y = points[:, 1]
# 用plt画出散点图
plt.scatter(x, y)
plt.show()

机器学习模型及其算法(线性回归)
2.定义损失函数

# 损失函数是系数的函数,另外还要传入数据的x,y
def compute_cost(w, b, points):
    total_cost = 0
    M = len(points)
    # 逐点计算平方损失误差,然后求平均数
    for i in range(M):
        x = points[i, 0]
        y = points[i, 1]
        total_cost += ( y - w * x - b ) ** 2 
    return total_cost/M

3.定义算法拟合函数

# 先定义一个求均值的函数
def average(data):
    sum = 0
    num = len(data)
    for i in range(num):
        sum += data[i]
    return sum/num

# 定义核心拟合函数


def fit(points):
    M = len(points)
    x_bar = average(points[:, 0])
    
    sum_yx = 0
    sum_x2 = 0
    sum_delta = 0
    
    for i in range(M):
        x = points[i, 0]
        y = points[i, 1]
        sum_yx += y * ( x - x_bar )
        sum_x2 += x ** 2
    # 根据公式计算w
    w = sum_yx / ( sum_x2 - M * (x_bar**2) )
    
    for i in range(M):
        x = points[i, 0]
        y = points[i, 1]
        sum_delta += ( y - w * x )
    b = sum_delta / M
    
    return w, b

4.测试

w, b = fit(points)
print("w is: ", w)
print("b is: ", b)
cost = compute_cost(w, b, points)
print("cost is: ", cost)

w is: 1.3224310227553846
b is: 7.991020982269173
cost is: 110.25738346621313

5.画出拟合曲线

plt.scatter(x, y)
# 针对每一个x,计算出预测的y值
pred_y = w * x + b

plt.plot(x, pred_y, c='r')
plt.show()

机器学习模型及其算法(线性回归)

使用梯度下降法实现线性回归

4.定义模型超参数

alpha = 0.0001
initial_w = 0
initial_b = 0
num_iter = 10

5.定义核心梯度下降算法

def grad_desc(points, initial_w, initial_b, alpha, num_iter):
    w = initial_w
    b = initial_b
    # 定义一个list保存所有的损失函数值,用来显示下降的过程
    cost_list = []
    
    for i in range(num_iter):
        cost_list.append( compute_cost(w, b, points) )
        w, b = step_grad_desc( w, b, alpha, points )
    
    return [w, b, cost_list]

def step_grad_desc( current_w, current_b, alpha, points ):
    sum_grad_w = 0
    sum_grad_b = 0
    M = len(points)
    
    # 对每个点,代入公式求和
    for i in range(M):
        x = points[i, 0]
        y = points[i, 1]
        sum_grad_w += ( current_w * x + current_b - y ) * x
        sum_grad_b += current_w * x + current_b - y
    
    # 用公式求当前梯度
    grad_w = 2/M * sum_grad_w
    grad_b = 2/M * sum_grad_b
    
    # 梯度下降,更新当前的w和b
    updated_w = current_w - alpha * grad_w
    updated_b = current_b - alpha * grad_b
    
    return updated_w, updated_b

6.测试

w, b, cost_list = grad_desc( points, initial_w, initial_b, alpha, num_iter )
print("w is: ", w)
print("b is: ", b)
cost = compute_cost(w, b, points)
print("cost is: ", cost)
plt.plot(cost_list)#默认使用轮次的索引作为x轴的表示
plt.show()

调用sklearn库完成线性回归

from sklearn.linear_model import LinearRegression
lr = LinearRegression()

x_new = x.reshape(-1, 1)#-1是无所谓多少行,1是表示1列,变成矩阵的形式
y_new = y.reshape(-1, 1)
lr.fit(x_new, y_new)
# 从训练好的模型中提取系数和截距
w = lr.coef_[0][0]
b = lr.intercept_[0]
print("w is: ", w)
print("b is: ", b)
cost = compute_cost(w, b, points)
print("cost is: ", cost)
相关标签: 推荐系统学习