欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TensorFlow 迁移学习(transfering learning)

程序员文章站 2024-03-20 23:50:28
...

本篇博客主要介绍TensorFlow中的迁移学习(transfering learning)。

节约计算资源,在训练好的模型的基础上扩展内容,充分利用原模型的理解力。(迁移前的数据和迁移后的数据相似或相关)

接下来介绍在tensorflow中将VGG16对动物的识别迁移到识别动物的长度。

下面是示例代码(需要数据集和VGG已经训练好的权值文件可留下邮箱):

# encoding:utf-8
from urllib.request import urlretrieve
import os
import numpy as np
import tensorflow as tf
import skimage.io
import skimage.transform
import matplotlib.pyplot as plt


'''
下载训练数据 tiger 和 kittycat 图片
'''
def download():
    categories = ['tiger', 'kittycat']
    for category in categories:
        os.makedirs('./for_transfer_learning/data/%s' % category, exist_ok=True)
        with open('./for_transfer_learning/imagenet_%s.txt' % category, 'r') as file:
            urls = file.readlines()
            n_urls = len(urls)
            for i, url in enumerate(urls):
                try:
                    urlretrieve(url.strip(), './for_transfer_learning/data/%s/%s' % (category, url.strip().split('/')[-1]))
                    print('%s %i/%i' % (category, i, n_urls))
                except:
                    print('%s %i/%i' % (category, i, n_urls), 'no image')


'''
加载图片数据
'''
def load_img(path):
    img = skimage.io.imread(path)
    img = img / 255.0
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))[None, :, :, :]   # shape [1, 224, 224, 3]
    return resized_img

'''
加载训练数据,包括图片数据和标签数据
'''
def load_data():
    imgs = {'tiger': [], 'kittycat': []}
    for k in imgs.keys():
        dir = './for_transfer_learning/data/' + k
        for file in os.listdir(dir):
            if not file.lower().endswith('.jpg'):
                continue
            try:
                resized_img = load_img(os.path.join(dir, file))
            except OSError:
                continue
            imgs[k].append(resized_img)    # [1, height, width, depth] * n
            if len(imgs[k]) == 400:        # only use 400 imgs to reduce my memory load
                break
    # fake length data for tiger and cat
    tigers_y = np.maximum(20, np.random.randn(len(imgs['tiger']), 1) * 30 + 100)
    cat_y = np.maximum(10, np.random.randn(len(imgs['kittycat']), 1) * 8 + 40)
    return imgs['tiger'], imgs['kittycat'], tigers_y, cat_y


class Vgg16:
    vgg_mean = [103.939, 116.779, 123.68]

    def __init__(self, vgg16_npy_path=None, restore_from=None):
        # pre-trained parameters
        try:
            self.data_dict = np.load(vgg16_npy_path, encoding='latin1').item()
        except FileNotFoundError:
            print('Please download VGG16 parameters from here https://mega.nz/#!YU1FWJrA!O1ywiCS2IiOlUCtCpI6HTJOMrneN-Qdv3ywQP5poecM\nOr from my Baidu Cloud: https://pan.baidu.com/s/1Spps1Wy0bvrQHH2IMkRfpg')

        self.tfx = tf.placeholder(tf.float32, [None, 224, 224, 3])
        self.tfy = tf.placeholder(tf.float32, [None, 1])

        # Convert RGB to BGR
        red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=self.tfx * 255.0)
        bgr = tf.concat(axis=3, values=[
            blue - self.vgg_mean[0],
            green - self.vgg_mean[1],
            red - self.vgg_mean[2],
        ])

        # pre-trained VGG layers are fixed in fine-tune
        conv1_1 = self.conv_layer(bgr, "conv1_1")
        conv1_2 = self.conv_layer(conv1_1, "conv1_2")
        pool1 = self.max_pool(conv1_2, 'pool1')

        conv2_1 = self.conv_layer(pool1, "conv2_1")
        conv2_2 = self.conv_layer(conv2_1, "conv2_2")
        pool2 = self.max_pool(conv2_2, 'pool2')

        conv3_1 = self.conv_layer(pool2, "conv3_1")
        conv3_2 = self.conv_layer(conv3_1, "conv3_2")
        conv3_3 = self.conv_layer(conv3_2, "conv3_3")
        pool3 = self.max_pool(conv3_3, 'pool3')

        conv4_1 = self.conv_layer(pool3, "conv4_1")
        conv4_2 = self.conv_layer(conv4_1, "conv4_2")
        conv4_3 = self.conv_layer(conv4_2, "conv4_3")
        pool4 = self.max_pool(conv4_3, 'pool4')

        conv5_1 = self.conv_layer(pool4, "conv5_1")
        conv5_2 = self.conv_layer(conv5_1, "conv5_2")
        conv5_3 = self.conv_layer(conv5_2, "conv5_3")
        pool5 = self.max_pool(conv5_3, 'pool5')

        # detach original VGG fc layers and
        # reconstruct your own fc layers serve for your own purpose
        self.flatten = tf.reshape(pool5, [-1, 7*7*512])
        self.fc6 = tf.layers.dense(self.flatten, 256, tf.nn.relu, name='fc6')
        self.out = tf.layers.dense(self.fc6, 1, name='out')

        self.sess = tf.Session()
        if restore_from:
            saver = tf.train.Saver()
            saver.restore(self.sess, restore_from)
        else:   # training graph
            self.loss = tf.losses.mean_squared_error(labels=self.tfy, predictions=self.out)
            self.train_op = tf.train.RMSPropOptimizer(0.001).minimize(self.loss)
            self.sess.run(tf.global_variables_initializer())

    def max_pool(self, bottom, name):
        return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)

    def conv_layer(self, bottom, name):
        with tf.variable_scope(name):
            conv = tf.nn.conv2d(bottom, self.data_dict[name][0], [1, 1, 1, 1], padding='SAME')
            lout = tf.nn.relu(tf.nn.bias_add(conv, self.data_dict[name][1]))
            return lout

    def train(self, x, y):
        loss, _ = self.sess.run([self.loss, self.train_op], {self.tfx: x, self.tfy: y})
        return loss

    def predict(self, paths):
        fig, axs = plt.subplots(1, 2)
        for i, path in enumerate(paths):
            x = load_img(path)
            length = self.sess.run(self.out, {self.tfx: x})
            axs[i].imshow(x[0])
            axs[i].set_title('Len: %.1f cm' % length)
            axs[i].set_xticks(()); axs[i].set_yticks(())
        plt.show()

    def save(self, path='./for_transfer_learning/model/transfer_learn'):
        saver = tf.train.Saver()
        saver.save(self.sess, path, write_meta_graph=False)


def train():
    tigers_x, cats_x, tigers_y, cats_y = load_data()

    # plot fake length distribution
    plt.hist(tigers_y, bins=20, label='Tigers')
    plt.hist(cats_y, bins=10, label='Cats')
    plt.legend()
    plt.xlabel('length')
    plt.show()

    xs = np.concatenate(tigers_x + cats_x, axis=0)
    ys = np.concatenate((tigers_y, cats_y), axis=0)

    vgg = Vgg16(vgg16_npy_path='./for_transfer_learning/vgg16.npy')
    print('Net built')
    for i in range(100):
        b_idx = np.random.randint(0, len(xs), 6)
        train_loss = vgg.train(xs[b_idx], ys[b_idx])
        print(i, 'train loss: ', train_loss)
    # 存储后面添加的全连接层参数
    vgg.save('./for_transfer_learning/model/transfer_learn')


def eval():
    vgg = Vgg16(vgg16_npy_path='./for_transfer_learning/vgg16.npy',
                restore_from='./for_transfer_learning/model/transfer_learn')
    vgg.predict(
        ['./for_transfer_learning/data/kittycat/000129037.jpg', './for_transfer_learning/data/tiger/391412.jpg'])


if __name__ == '__main__':
    # 下载数据
    # download()
    # 训练
    train()
    # 测试
    # eval()

 

预测结果:

TensorFlow 迁移学习(transfering learning)