欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

@synchronized详解

程序员文章站 2024-03-20 17:10:16
...

如果你已经使用 Objective-C 编写过任何并发程序,那么想必是见过 @synchronized 这货了。@synchronized 结构所做的事情跟锁(NSLock, 更准确的说法应该是递归锁NSRecursiveLock)类似:它可以防止不同的线程同时执行同一段代码。但在某些情况下,相比于使用 NSLock 创建锁对象、加锁和解锁来说,@synchronized 用着更方便,可读性更高, 自然效率会比较低。

递归锁: 同一个线程可以重复的加锁而不会导致死锁(互斥锁: 重复加锁会导致死锁) ,加的递归锁全部执行完后 才会把资源让给别的线程。不同的线程要求加锁会陷入等待. 

下面是SDWebImage中的代码, 给一个线程不安全的NSMapTable加递归锁, 保证NSMapTable的线程安全.

@synchronized详解
在上面的例子中, @synchronized与 [_lock lock] 和 [_lock unlock] 效果相同。你可以把它当成是锁住 self,仿佛 self 就是个 NSLock。锁在左括号 { 后面的任何代码运行之前被获取到,在右括号 } 后面的任何代码运行之前被释放掉。再也不用担心我忘记调用 unlock 了!

你可以给任何 Objective-C 对象上加个 @synchronized。效果和 @synchronized(self)是相同的。

回到研究上来

我对 @synchronized 的实现十分好奇并搜了一些它的细节。我找到了一些答案,但这些解释都没有达到我想要的深度。锁是如何与你传入 @synchronized 的对象关联上的?@synchronized会保持(retain,增加引用计数)被锁住的对象么?假如你传入 @synchronized 的对象在 @synchronized 的 block 里面被释放或者被赋值为 nil 将会怎么样?这些全都是我想回答的问题。而我这次的收获,会要你好看????。

@synchronized 的文档告诉我们 @synchronized block 在被保护的代码上暗中添加了一个异常处理。为的是同步某对象时如若抛出异常,锁会被释放掉。

SO 上的这篇帖子 说 @synchronized block 会变成 objc_sync_enter 和 objc_sync_exit 的成对儿调用。我们不知道这些函数是干啥的,但基于这些事实我们可以认为编译器将这样的代码:

@synchronized(obj) {
    // do work
}
转化成这样的东东:
@try {
    objc_sync_enter(obj);
    // do work
} @finally {
    objc_sync_exit(obj);    
}

objc_sync_enter 和 objc_sync_exit 是什么鬼?它们是如何实现的?在 Xcode 中按住 Command 键单击它们,然后进到了 <objc/objc-sync.h>,里面有我们感兴趣的这两个函数:


/** 
 * Begin synchronizing on 'obj'.  
 * Allocates recursive pthread_mutex associated with 'obj' if needed.
 * 
 * @param obj The object to begin synchronizing on.
 * 
 * @return OBJC_SYNC_SUCCESS once lock is acquired.  
 */
OBJC_EXPORT int
objc_sync_enter(id _Nonnull obj)
    OBJC_AVAILABLE(10.3, 2.0, 9.0, 1.0, 2.0);

/** 
 * End synchronizing on 'obj'. 
 * 
 * @param obj The object to end synchronizing on.
 * 
 * @return OBJC_SYNC_SUCCESS or OBJC_SYNC_NOT_OWNING_THREAD_ERROR
 */
OBJC_EXPORT int
objc_sync_exit(id _Nonnull obj)
    OBJC_AVAILABLE(10.3, 2.0, 9.0, 1.0, 2.0);

不过,objc_sync_enter 的文档告诉我们一些新东西: @synchronized 结构在工作时为传入的对象分配了一个递归锁。分配工作何时发生,如何发生呢?它怎样处理 nil?幸运的是 Objective-C runtime 是开源的,所以我们可以马上阅读源码并找到答案!

你可以在这里找到 objc-sync 的全部源码。在代码块的下方我将立刻做出解释,所以尝试理解代码时别花太长时间哦。

typedef struct SyncData {
    id object;
    recursive_mutex_t mutex;
    struct SyncData* nextData;
    int threadCount;
} SyncData;

typedef struct SyncList {
    SyncData *data;
    spinlock_t lock;
} SyncList;

// Use multiple parallel lists to decrease contention among unrelated objects.
#define COUNT 16
#define HASH(obj) ((((uintptr_t)(obj)) >> 5) & (COUNT - 1))
#define LOCK_FOR_OBJ(obj) sDataLists[HASH(obj)].lock
#define LIST_FOR_OBJ(obj) sDataLists[HASH(obj)].data
static SyncList sDataLists[COUNT];

一开始,我们有一个 struct SyncData 的定义。这个结构体包含一个 object(嗯就是我们给 @synchronized 传入的那个对象)和一个有关联的 recursive_mutex_t(底层实现的递归锁),它就是那个跟 object 关联在一起的锁。每个 SyncData 也包含一个指向另一个 SyncData 对象的指针,叫做 nextData,所以你可以把每个 SyncData 结构体看做是链表中的一个元素。最后,每个 SyncData 包含一个 threadCountthreadCount 就是递归锁在同一线程的加锁次数。每次成功的获得该锁都必须平衡调用锁住和解锁的操作。只有所有的锁住和解锁操作都平衡的时候,锁才真正被释放给其他线程获得。当threadCount==0 就表明了这个 SyncData 实例可以被其他线程获得了。

下面是 struct SyncList 的定义。正如我在上面提过,你可以把 SyncData 当做是链表中的节点。每个 SyncList 结构体都有个指向 SyncData 节点链表头部的指针,也有一个用于防止多个线程对此列表做并发修改的锁。

上面代码块的最后一行是 sDataLists 的声明 - 一个 SyncList 结构体数组,大小为16。通过定义的一个哈希算法将传入对象映射到数组上的一个下标。值得注意的是这个哈希算法设计的很巧妙,是将对象指针在内存的地址转化为无符号整型并右移五位,再跟 0xF 做按位与运算,这样结果不会超出数组大小。 LOCK_FOR_OBJ(obj) 和 LIST_FOR_OBJ(obj) 这俩宏就更好理解了,先是哈希出对象的数组下标,然后取出数组对应元素的 lock 或 data。一切都是这么顺理成章哈。

当你调用 objc_sync_enter(obj) 时,它用 obj 内存地址的哈希值查找合适的 SyncData,然后将其上锁。当你调用 objc_sync_exit(obj) 时,它查找合适的 SyncData 并将其解锁。

噢耶!现在我们知道了 @synchronized 如何将一个锁和你正在同步的对象关联起来,我希望聊聊当一个对象在 @synchronized block 当中被释放或设为 nil 时会发生什么。

如果你看了源码,你会注意到 objc_sync_enter 里面没有 retain 和 release。所以它没有保持传递给它的对象。我们可以用下面的代码来做个测试:

NSDate *test = [NSDate date];
// This should always be `1`
NSLog(@"%@", @([test retainCount]));

@synchronized (test) {

    // This will be `2` if `@synchronized` somehow
    // retains `test`
    NSLog(@"%@", @([test retainCount]));
}

两次输出结果都是 1。那么 objc_sync_enter 貌似是没保持被传入的对象啊。这就有趣了。如果你正在同步的对象被释放了,然后有可能另一个新的对象在此处(被释放对象的内存地址)被分配内存。有可能某个其他的线程试着去同步那个新的对象(就是那个在被释放的旧对象的内存地址上刚刚新创建的对象)。在这种情况下,另一个线程将会阻塞,直到当前线程结束它的同步 block。这看起来并不是很糟。这听起来像是这种事情实现者早就知道并予以接受。我没有遇到过任何好的替代方案。

假如对象在 “synchronized block” 中被设成 nil 呢?我们再回顾下实现吧:

NSString *test = @"test";
@try {
    // Allocates a lock for test and locks it
    objc_sync_enter(test);
    test = nil;
} @finally {
    // Passed `nil`, so the lock allocated in `objc_sync_enter`
    // above is never unlocked or deallocated
    objc_sync_exit(test);   
}

objc_sync_enter 被调用时传入的是 test 而 objc_sync_exit 被调用时传入的是 nil。而传入 nil 的时候 objc_sync_exit 是个空操作,所以将不会有人释放锁。这真操蛋!

如果 Objective-C 容易受这种情况的影响,我们知道么?下面的代码调用 @synchronized 并在 @synchronized block 中将一个指针设为 nil。然后在后台线程对指向同一个对象的指针调用 @synchronized。如果在 @synchronized block 中设置一个对象为 nil 会让锁死锁,那么在第二个 @synchronized 中的代码将永远不会执行。我们将不会在控制台中看见任何东西打印出来。

NSNumber *number = @(1);
NSNumber *thisPtrWillGoToNil = number;

@synchronized (thisPtrWillGoToNil) {
    /**
     * Here we set the thing that we're synchronizing on to `nil`. If
     * implemented naively, the object would be passed to `objc_sync_enter`
     * and `nil` would be passed to `objc_sync_exit`, causing a lock to
     * never be released.
     */
    thisPtrWillGoToNil = nil;
}

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0), ^ {

    NSCAssert(![NSThread isMainThread], @"Must be run on background thread");

    /**
     * If, as mentioned in the comment above, the synchronized lock is never
     * released, then we expect to wait forever below as we try to acquire
     * the lock associated with `number`.
     *
     * This doesn't happen, so we conclude that `@synchronized` must deal
     * with this correctly.
     */
    @synchronized (number) {
        NSLog(@"This line does indeed get printed to stdout");
    }

});

当我们执行上面的代码时,那行代码确实打印到控制台了!所以 Objective-C 很好地处理了这种情形。我打赌是编译器做了类似下面的事情来解决这事儿的。

NSString *test = @"test";
id synchronizeTarget = (id)test;
@try {
    objc_sync_enter(synchronizeTarget);
    test = nil;
} @finally {
    objc_sync_exit(synchronizeTarget);   
}

用这种方式实现的话,传递给 objc_sync_enter 和 objc_sync_exit 总是相同的对象。他们在传入 nil 时都是空操作。这带来了个棘手的 debug 场景:如果你向 @synchronized 传递 nil,那么你就不会得到任何锁而且你的代码将不会是线程安全的!如果你想知道为什么你正收到出乎意料的竞态(race),确保你没向你的 @synchronized 传入 nil。你可以在 objc_sync_nil 上设置一个符号断点来达到此目的。objc_sync_nil 是一个空方法,当 objc_sync_enter 函数被传入 nil 时会被调用,这让 debug 更容易些。

 

下面是 objc_sync_enter/objc_sync_exit 的源码,主要逻辑很容易看懂, 加了些注释,加深理解:

// Begin synchronizing on 'obj'. 
// Allocates recursive mutex associated with 'obj' if needed.
// Returns OBJC_SYNC_SUCCESS once lock is acquired.  
// 开始在obj上执行同步操作, 懒加载生成一个递归锁关联obj, 返回OBJC_SYNC_SUCCESS
int objc_sync_enter(id obj)
{
    int result = OBJC_SYNC_SUCCESS;

    if (obj) {
        // 查找这个obj是否已经生成SyncData,如果没有生成一个
        SyncData* data = id2data(obj, ACQUIRE); 
        assert(data);
        data->mutex.lock(); // 调用SyncData的递归锁加锁
    } else {
        // @synchronized(nil) does nothing
        // 如果传入nil, 打印了一个log,然后什么都不做
        if (DebugNilSync) {
            _objc_inform("NIL SYNC DEBUG: @synchronized(nil); set a breakpoint on objc_sync_nil to debug");
        }
        objc_sync_nil();
    }

    return result;
}


// End synchronizing on 'obj'. 
// Returns OBJC_SYNC_SUCCESS or OBJC_SYNC_NOT_OWNING_THREAD_ERROR
// 结束在obj上的同步操作, 
int objc_sync_exit(id obj)
{
    int result = OBJC_SYNC_SUCCESS;
    
    if (obj) {
        //还是找到这个对象所在的结构体SyncData
        SyncData* data = id2data(obj, RELEASE); 
        if (!data) {
            // 如果这个结构体在block执行过程中找不到了,会返回error
            result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
        } else {
            // 尝试解锁,解锁失败也会返回error
            bool okay = data->mutex.tryUnlock();
            if (!okay) {
                result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
            }
        }
    } else {
        
        // @synchronized(nil) does nothing
        // 如果这个对象在block执行过程中变成nil了,会什么都不做
    }
	

    return result;
}

最后回答上述的问题: 

锁是如何与你传入 @synchronized 的对象关联上的?

  • 你调用 sychronized 的每个对象,Objective-C runtime 都会为其分配一个递归锁并存储在哈希表中。

@synchronized会保持(retain,增加引用计数)被锁住的对象么?

  • 使用@synchronized不会导致此对象的引用计数增加

假如传入 @synchronized 的对象在 @synchronized 的 block 里面被释放或者被赋值为 nil 将会怎么样?

  • 如果在 sychronized 内部对象被释放或被设为 nil 看起来都 OK。不过这没在文档中说明,所以我不会再生产代码中依赖这条。

如果传入@synchronized 的对象值为 nil 将会怎么样?

  • @synchronized(nil)不会有任何作用,hash计算为空,加锁失败,代码块不是线程安全的。你可以通过在 objc_sync_nil 上加断点来查看是否发生了这样的事情。

最后总结一下@synchronized的原理, @synchronized使用传入的object的内存地址作key,通过hash map对应的一个系统维护的递归锁。所以不管是传入什么类型的object,只要是有内存地址,就能启动同步代码块的效果。如果传入nil, 那就相当于没有加锁.