欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ReentrantLockd的非公平锁lock方法实现源码解析 博客分类: java多线程 java 

程序员文章站 2024-03-20 15:46:58
...
//ReetrantLock源码解析:
 Lock lock = new ReentrantLock();
      try {
    	   lock.lock();
    	   ....doSomething
	} finally {
		lock.unlock();
	}
    //先从我们最常用的这个lock()方法开始.从非公平模式来看lock的实现,
    public void lock() {
        sync.lock();  //委托到sync对象实现.
    }
    //sync的实现
      abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = -5179523762034025860L;

        //抽象方法主要就是实现它
        abstract void lock();

        /**
         * Performs non-fair tryLock.  tryAcquire is
         * implemented in subclasses, but both need nonfair
         * try for trylock method.
         */
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

        protected final boolean isHeldExclusively() {
            // While we must in general read state before owner,
            // we don't need to do so to check if current thread is owner
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        final ConditionObject newCondition() {
            return new ConditionObject();
        }

        // Methods relayed from outer class

        final Thread getOwner() {
            return getState() == 0 ? null : getExclusiveOwnerThread();
        }

        final int getHoldCount() {
            return isHeldExclusively() ? getState() : 0;
        }

        final boolean isLocked() {
            return getState() != 0;
        }

        /**
         * Reconstitutes this lock instance from a stream.
         * @param s the stream
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
            setState(0); // reset to unlocked state
        }
    }

    非公平模式下的sync:
     static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        //OK 找到实现方法
        final void lock() {
	  //利用CAS机制将state值设置为1即如果AbstractQueuedSynchronizer中的state为0,设置为1
            if (compareAndSetState(0, 1))
	        //成功.设置当前的线程为排他线程
                setExclusiveOwnerThread(Thread.currentThread());
            else
	       //尝试以独占方式获取对象。
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }

     //调用AbstractQueuedSynchronizer中的acquire方法
     public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    //调用tryAcquire
    protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }


  //然后就是调用这个方法
  final boolean nonfairTryAcquire(int acquires) {
            //获取当前的线程
            final Thread current = Thread.currentThread();
            int c = getState();
	    //获取当前state状态,如果是0则可以获取锁(其他线程已经释放了资源)。
            if (c == 0) {
	       
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
	    //当前线程就是独占线程.线程重入。
            else if (current == getExclusiveOwnerThread()) {
	       //state值+1。犹豫都是同一线程进入,且持有了锁所以这里可以不用CAS机制加数量。
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

//假如上面方法获取锁失败即返回false继续执行:
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
先看addWaiter():

private Node addWaiter(Node mode) {
        //创建node节点。mode为模式当前设置的模式为Node.EXCLUSIVE排他锁;
        Node node = new Node(Thread.currentThread(), mode);
        // 快速入队。
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
	    //一切顺利没有其他线程入队此时用CAS入队。
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
	//不顺利有其他线程修改了队列的尾部node。那么就要循环入队
        enq(node);
        return node;
    }
    
 private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
	    //当前队列为空
            if (t == null) { //初始化一个节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
	        //无限尝试直到node加入队列
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

然后是acquireQueued()方法:
final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
		//如果node的前一个节点是头节点且再次尝试获取锁成功
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
		
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }


     private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             如果前面的节点是signal即等待唤醒,那么当前节点可以被挂起。 
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
	     说明前面的线程已经被取消,一直循环将这些节点移出队列。
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
	     //设置前驱节点的状态为signal
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

     private final boolean parkAndCheckInterrupt() {
        //挂起当前线程
        LockSupport.park(this);
	//返回当前线程是否被中断
        return Thread.interrupted();
    }

//取消线程
    private void cancelAcquire(Node node) {
       
        if (node == null)
            return;

        node.thread = null;

      
        Node pred = node.prev;
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;

        Node predNext = pred.next;

       
        node.waitStatus = Node.CANCELLED;

       
        if (node == tail && compareAndSetTail(node, pred)) {
            compareAndSetNext(pred, predNext, null);
        } else {
          
            int ws;
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }



总结:lock方法的所有步骤实现:
   1、没有获得锁。
   2、再次尝试获得锁。
   3、获取锁失败就创建node加入队列。如果当前队列为空创建一个空节点为头尾,不为空即利用CAS机制无限循环直到加入队列为止。
   4、判断当前线程是否为第二个节点,如果是,再次尝试获取锁(成功设置当前节点为头节点),如果不是判断是否需要挂起当前线程。
     如果当前节点的前一个节点状态时singal时,挂起当前线程。如果不是signal,将当前节点前面的waitstatus>0(表明节点被中断)的所有节点移出队列。下次再进入这个方法的时候将前驱节点的值设置为singal。


所以所有线程都会阻塞在第四步。直到线程被唤醒。线程先离开必须是第二个节点,并且能够获取锁。
相关标签: java