深度学习入门基础教程(三) CNN做MNIST数据集图像分类 pytorch版代码
程序员文章站
2024-03-19 22:53:40
...
一. 原理解读
这个和上一篇教程一样,都是简单的图像分类,只是针对的数据集不同。鉴于是入门教程,再仔细写一遍
分享一篇我觉得非常适合新手理解CNN的博文 https://blog.csdn.net/XYlittlework/article/details/79903225
MNIST数据集(训练集6万张,测试集1万张,每张灰度图28*28*1(单通道),数字0-9对应标签值0-9)如下:
二. pytorch版完整代码复现
1. 全代码名称展示
因为是最简单的一个手写体数据集,随便跑个几十轮,在测试集上的准确率就到了99%以上
2. 代码
import torch
import torch.nn as nn
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader,Dataset
from torch.optim import Adam
import os
import shutil
"""
torch.nn是专门为神经网络设计的模块化接口。nn构建于autograd之上,可以用来定义和运行神经网络。
nn.Module是nn中十分重要的类,包含网络各层的定义及forward方法。
定义自已的网络:
需要继承nn.Module类,并实现forward方法。
一般把网络中具有可学习参数的层放在构造函数__init__()中,
不具有可学习参数的层(如ReLU)可放在构造函数中,也可不放在构造函数中(而在forward中使用nn.functional来代替)。
只要在nn.Module的子类中定义了forward函数,backward函数就会被自动实现(利用Autograd)。
注:Pytorch基于nn.Module构建的模型中,只支持mini-batch的Variable输入方式,
比如,只有一张输入图片,也需要变成 N x C x H x W 的形式:
input_image = torch.FloatTensor(1, 28, 28)
input_image = input_image.unsqueeze(0) # 1 x 1 x 28 x 28
"""
class Unit(nn.Module):#以上解释了这里为什么必须写出继承类nn.Module
def __init__(self,inc,ouc):
super(Unit,self).__init__()
self.unit_net = nn.Sequential(nn.Conv2d(inc,ouc,kernel_size=3,padding=1),
nn.BatchNorm2d(ouc),
nn.ReLU())
def forward(self, x):
return self.unit_net(x)
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.net = nn.Sequential(Unit(1,32),#32*32
Unit(32,32),
Unit(32,32),
nn.MaxPool2d(2),#16
Unit(32,64),
Unit(64,64),
Unit(64,64),
Unit(64,64),
nn.MaxPool2d(2),#8
Unit(64, 128),
Unit(128, 128),
Unit(128, 128),
Unit(128, 128),
nn.MaxPool2d(2),#4
Unit(128,128),
Unit(128,128),
Unit(128,128),
nn.AvgPool2d(4)#1
)
self.fc = nn.Linear(128, 10)
def forward(self, x):
y = self.net(x)
y = y.view(-1,128)
return self.fc(y)
'训练集转换'
train_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),#随机翻转
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])
'train=True加载训练集'
train_set = MNIST('./data/',train=True,transform=train_transforms,download=True)
train_dataloader = DataLoader(train_set,batch_size=512,shuffle=True)
'测试集转换'
test_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])
'train=False加载测试集'
test_set = MNIST('./data/',train=False,transform=test_transforms,download=True)
test_dataloader = DataLoader(test_set,batch_size=512,shuffle=False)
param_path = r'./param/mnist_cnn.pkl'
tmp_param_path = r'./param/mnist_cnn_temp.pkl'
CUDA = torch.cuda.is_available()
# print(CUDA)
module = Net()
if CUDA:
module.cuda()
optimizer = Adam(module.parameters(),lr=0.001,weight_decay=0.0001)
loss_f = nn.CrossEntropyLoss()#分类用交叉熵
'创建一个学习率调整函数,每30个周期将学习率除以10'
def adjust_lr_rate(epoch):
lr = 0.001
if epoch>180:
lr = lr / 1000000
elif epoch>150:
lr = lr / 100000
elif epoch>120:
lr = lr / 10000
elif epoch>90:
lr = lr / 1000
elif epoch>60:
lr = lr / 100
elif epoch>30:
lr = lr / 10
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def test():#测试集1万张
test_acc = 0
module.eval()
for j,(imgs, labels) in enumerate(test_dataloader):#每次处理512张
if CUDA:
imgs = imgs.cuda()
labels = labels.cuda()
outs = module(imgs)
#训练求loss是为了做权重更新,测试里不需要
_, prediction = torch.max(outs, 1)
test_acc += torch.sum(prediction == labels)
test_acc = test_acc.cpu().item() / 10000
return test_acc
def train(num_epoch):#训练集6万张
if os.path.exists(param_path):
module.load_state_dict(torch.load(param_path))
for epoch in range(num_epoch):
train_loss = 0
train_acc = 0
module.train()
for i, (imgs, labels) in enumerate(train_dataloader):#每次处理512张
# print('labels:',labels)#每个标签对应一个0-9的数字
if CUDA:
imgs = imgs.cuda()
labels = labels.cuda()
outs = module(imgs)
# print(outs.shape)
# print('outs:',outs)
loss = loss_f(outs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print('1111',loss)
# print('2222',loss.data)#tensor且GPU
# print('3333',loss.cpu())
# print('4444',loss.cpu().data)#tensor且CPU
# # print('5555',loss.cpu().data[0])#报错 IndexError: invalid index of a 0-dim tensor. Use tensor.item() to convert a 0-dim tensor to a Python number
# # print('6666',loss.cpu().numpy())#报错 RuntimeError: Can't call numpy() on Variable that requires grad. Use var.detach().numpy() instead.
# print('7777',loss.cpu().detach().numpy())
# print('8888',loss.cpu().data.numpy())
# print('9999',loss.cpu().item())
# print('aaaa',loss.item())#后四者一样,都是把数值取出来
train_loss += loss.cpu().item() * imgs.size(0)#imgs.size(0)批次
'分类问题,常用torch.max(outs,1)得到索引来表示类别'
_, prediction = torch.max(outs,1)#prediction对应每行最大值所在位置的索引值,即0-9
train_acc += torch.sum(prediction == labels)
# print(train_acc.cpu().item())
adjust_lr_rate(epoch)
train_loss = train_loss / 60000
train_acc = train_acc.cpu().item() / 60000 #此处求概率必须用item()把数值取出,否则求出的不是小数
'每训练完一个epoch,用测试集做一遍评估'
test_acc = test()
best_acc = 0
if test_acc > best_acc:
best_acc = test_acc
if os.path.exists(tmp_param_path):
shutil.copyfile(tmp_param_path, param_path)#防权重损坏
torch.save(module.state_dict(),tmp_param_path)
print('Epoch:',epoch,'Train_Loss:',train_loss,'Train_Acc:',train_acc,'Test_Acc:',test_acc)
train(1000)
3. 扩展
用如上训练好的模型做推断
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.models import squeezenet1_1
from PIL import Image
class Unit(nn.Module):#以上解释了这里为什么必须写出继承类nn.Module
def __init__(self,inc,ouc):
super(Unit,self).__init__()
self.unit_net = nn.Sequential(nn.Conv2d(inc,ouc,kernel_size=3,padding=1),
nn.BatchNorm2d(ouc),
nn.ReLU())
def forward(self, x):
return self.unit_net(x)
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.net = nn.Sequential(Unit(1,32),#32*32
Unit(32,32),
Unit(32,32),
nn.MaxPool2d(2),#16
Unit(32,64),
Unit(64,64),
Unit(64,64),
Unit(64,64),
nn.MaxPool2d(2),#8
Unit(64, 128),
Unit(128, 128),
Unit(128, 128),
Unit(128, 128),
nn.MaxPool2d(2),#4
Unit(128,128),
Unit(128,128),
Unit(128,128),
nn.AvgPool2d(4)#1
)
self.fc = nn.Linear(128, 10)
def forward(self, x):
y = self.net(x)
y = y.view(-1,128)
return self.fc(y)
CUDA = torch.cuda.is_available()
# module = squeezenet1_1(pretrained=True)#torchvision官方内置模型直接调用
module = Net()#自己的模型调用
module.load_state_dict(torch.load(r'./param/mnist_cnn.pkl'))
module.eval()
if CUDA:
module.cuda()
def predict_img(img_path):
img = Image.open(img_path)
img2data = transforms.Compose([
transforms.Resize(28),#因为这个模型是专门针对32*32的CIFAR10
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
data = img2data(img)
'因为PyTorch将所有的图像当做批次,默认只处理四维数据'
data = data.unsqueeze_(0)
if CUDA:
data = data.cuda()
out = module(data)
# print(out)
_,index = torch.max(out,1)
return index.item()
if __name__ == '__main__':
index = predict_img(r'C:\Users\87419\Desktop/00.jpg')
print(index)
随便拿一张灰度图测试一下:
注:测试图也需是灰度图
RGB图转灰度图代码
from PIL import Image
I = Image.open(r'C:\Users\87419\Desktop/0.jpg').convert('L')
I.save(r'C:\Users\87419\Desktop/00.jpg')#灰度图
上一篇: Java基础知识回顾