欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

一致性哈希算法

程序员文章站 2024-03-19 22:23:28
...

更多干货

一致性哈希算法,作为分布式计算的数据分配参考,比传统的取模,划段都好很多。

在电信计费中,可以作为多台消息接口机和在线计费主机的分配算法,根据session_id来分配,这样当计费主机动态伸缩的时候,因为session_id缓存缺失而需要放通的会话,会明显减少。

 

传统的取模方式

 

例如10条数据,3个节点,如果按照取模的方式,那就是

node a: 0,3,6,9

node b: 1,4,7

node c: 2,5,8

 

当增加一个节点的时候,数据分布就变更为

node a:0,4,8

node b:1,5,9

node c: 2,6

node d: 3,7

 

总结:数据3,4,5,6,7,8,9在增加节点的时候,都需要做搬迁,成本太高

 

一致性哈希方式

最关键的区别就是,对节点和数据,都做一次哈希运算,然后比较节点和数据的哈希值,数据取和节点最相近的节点做为存放节点。这样就保证当节点增加或者减少的时候,影响的数据最少。

还是拿刚刚的例子,(用简单的字符串的ascii码做哈希key):

十条数据,算出各自的哈希值

0:192

1:196

2:200

3:204

4:208

5:212

6:216

7:220

8:224

9:228

 

有三个节点,算出各自的哈希值

node a: 203

node g: 209

node z: 228

 

这个时候比较两者的哈希值,如果大于228,就归到前面的203,相当于整个哈希值就是一个环,对应的映射结果:

node a: 0,1,2

node g: 3,4

node z: 5,6,7,8,9

 

这个时候加入node n, 就可以算出node n的哈希值:

node n: 216

 

这个时候对应的数据就会做迁移:

node a: 0,1,2

node g: 3,4

node n: 5,6

node z: 7,8,9

 

这个时候只有5和6需要做迁移

另外,这个时候如果只算出三个哈希值,那再跟数据的哈希值比较的时候,很容易分得不均衡,因此就引入了虚拟节点的概念,通过把三个节点加上ID后缀等方式,每个节点算出n个哈希值,均匀的放在哈希环上,这样对于数据算出的哈希值,能够比较散列的分布(详见下面代码中的replica)

 

通过这种算法做数据分布,在增减节点的时候,可以大大减少数据的迁移规模。

 

下面转载的哈希代码,已经将gen_key改成上述描述的用字符串ascii相加的方式,便于测试验证。

 

import md5
class HashRing(object):
    def __init__(self, nodes=None, replicas=3):
        """Manages a hash ring.
        `nodes` is a list of objects that have a proper __str__ representation.
        `replicas` indicates how many virtual points should be used pr. node,
        replicas are required to improve the distribution.
        """
        self.replicas = replicas
        self.ring = dict()
        self._sorted_keys = []
        if nodes:
            for node in nodes:
                self.add_node(node)
    def add_node(self, node):
        """Adds a `node` to the hash ring (including a number of replicas).
        """
        for i in xrange(0, self.replicas):
            key = self.gen_key('%s:%s' % (node, i))
            print "node %s-%s key is %ld" % (node, i, key)
            self.ring[key] = node
            self._sorted_keys.append(key)
        self._sorted_keys.sort()
    def remove_node(self, node):
        """Removes `node` from the hash ring and its replicas.
        """
        for i in xrange(0, self.replicas):
            key = self.gen_key('%s:%s' % (node, i))
            del self.ring[key]
            self._sorted_keys.remove(key)
    def get_node(self, string_key):
        """Given a string key a corresponding node in the hash ring is returned.
        If the hash ring is empty, `None` is returned.
        """
        return self.get_node_pos(string_key)[0]
    def get_node_pos(self, string_key):
        """Given a string key a corresponding node in the hash ring is returned
        along with it's position in the ring.
        If the hash ring is empty, (`None`, `None`) is returned.
        """
        if not self.ring:
            return None, None
        key = self.gen_key(string_key)
        nodes = self._sorted_keys
        for i in xrange(0, len(nodes)):
            node = nodes[i]
            if key <= node:
                print "string_key %s key %ld" % (string_key, key) 
                print "get node %s-%d " % (self.ring[node], i)
                return self.ring[node], i
        return self.ring[nodes[0]], 0
    def print_ring(self):
        if not self.ring:
            return None, None
        nodes = self._sorted_keys
        for i in xrange(0, len(nodes)):
            node = nodes[i]
            print "ring slot %d is node %s, hash vale is %s" % (i, self.ring[node], node)
    def get_nodes(self, string_key):
        """Given a string key it returns the nodes as a generator that can hold the key.
        The generator is never ending and iterates through the ring
        starting at the correct position.
        """
        if not self.ring:
            yield None, None
        node, pos = self.get_node_pos(string_key)
        for key in self._sorted_keys[pos:]:
            yield self.ring[key]
        while True:
            for key in self._sorted_keys:
                yield self.ring[key]
    def gen_key(self, key):
        """Given a string key it returns a long value,
        this long value represents a place on the hash ring.
        md5 is currently used because it mixes well.
        """
        m = md5.new()
        m.update(key)
        return long(m.hexdigest(), 16)
        """
        hash = 0
        for i in xrange(0, len(key)):
            hash += ord(key[i]) 
        return hash
        """
 
 
memcache_servers = ['a',
                   'g',
                    'z']
ring = HashRing(memcache_servers,1)
ring.print_ring()
server = ring.get_node('0000')
server = ring.get_node('1111')
server = ring.get_node('2222')
server = ring.get_node('3333')
server = ring.get_node('4444')
server = ring.get_node('5555')
server = ring.get_node('6666')
server = ring.get_node('7777')
server = ring.get_node('8888')
server = ring.get_node('9999')
 
print '----------------------------------------------------------'
 
memcache_servers = ['a',
                   'g',
                   'n',
                    'z']
ring = HashRing(memcache_servers,1)
ring.print_ring()
server = ring.get_node('0000')
server = ring.get_node('1111')
server = ring.get_node('2222')
server = ring.get_node('3333')
server = ring.get_node('4444')
server = ring.get_node('5555')
server = ring.get_node('6666')
server = ring.get_node('7777')
server = ring.get_node('8888')
server = ring.get_node('9999')