一致性哈希java实现算法
程序员文章站
2024-03-19 21:40:22
...
hash算法
package com.cn.cmbc.function;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class HashFunction {
private MessageDigest md5 = null;
/**
* 实现一致性哈希算法中使用的哈希函数,使用MD5算法来保证一致性哈希的平衡性
* @param key
* @return
*/
/*public long hash(String key) {
if (md5 == null) {
try {
md5 = MessageDigest.getInstance("MD5");
} catch (NoSuchAlgorithmException e) {
throw new IllegalStateException("no md5 algrithm found");
}
}
md5.reset();
md5.update(key.getBytes());
byte[] bKey = md5.digest();
// 具体的哈希函数实现细节--每个字节 & 0xFF 再移位
long result = ((long) (bKey[3] & 0xFF) << 4)
| ((long) (bKey[2] & 0xFF) << 6 | ((long) (bKey[1] & 0xFF) << 8) | (long) (bKey[0] & 0xFF));
return result & 0xffffffffL;
}*/
/**
* 使用FNV1_32_HASH算法计算服务器的Hash值,这里不使用重写hashCode的方法,最终效果没区别
* @param str
* @return
*/
public long hash(String str) {
final int p = 16777619;
int hash = (int) 2166136261L;
for (int i = 0; i < str.length(); i++)
hash = (hash ^ str.charAt(i)) * p;
hash += hash << 13;
hash ^= hash >> 7;
hash += hash << 3;
hash ^= hash >> 17;
hash += hash << 5;
// 如果算出来的值为负数则取其绝对值
if (hash < 0)
hash = Math.abs(hash);
return hash;
}
}
真正实现:
package com.cn.cmbc.function;
import java.util.Collection;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;
import java.util.SortedMap;
import java.util.SortedSet;
import java.util.TreeMap;
import java.util.TreeSet;
public class ConsistentHash<T> {
private final HashFunction hashFunction;
/**
* 节点的复制因子,实际节点个数 * numberOfReplicas = 虚拟节点个数
*/
private final int numberOfReplicas;
/**
* 存储虚拟节点的hash值到真实节点的映射
*/
private final SortedMap<Long, T> circle = new TreeMap<Long, T>();
public ConsistentHash(HashFunction hashFunction, int numberOfReplicas, Collection<T> nodes) {
this.hashFunction = hashFunction;
this.numberOfReplicas = numberOfReplicas;
for (T node : nodes)
add(node);
}
public void add(T node) {
for (int i = 0; i < numberOfReplicas; i++)
// 对于一个实际机器节点 node, 对应 numberOfReplicas 个虚拟节点
/*
* 不同的虚拟节点(i不同)有不同的hash值,但都对应同一个实际机器node
* 虚拟node一般是均衡分布在环上的,数据存储在顺时针方向的虚拟node上
*/
circle.put(hashFunction.hash(node.toString() + i), node);
}
public void remove(T node) {
for (int i = 0; i < numberOfReplicas; i++)
circle.remove(hashFunction.hash(node.toString() + i));
}
/*
* 获得一个最近的顺时针节点,根据给定的key 取Hash 然后再取得顺时针方向上最近的一个虚拟节点对应的实际节点 再从实际节点中取得 数据
*/
public T get(Object key) {
if (circle.isEmpty())
return null;
long hash = hashFunction.hash(String.valueOf(key));// node
// 用String来表示,获得node在哈希环中的hashCode
if (!circle.containsKey(hash)) {// 数据映射在两台虚拟机器所在环之间,就需要按顺时针方向寻找机器
SortedMap<Long, T> tailMap = circle.tailMap(hash);
hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
}
return circle.get(hash);
}
public long getSize() {
return circle.size();
}
/*
* 查看MD算法生成的hashCode值---表示整个哈希环中各个虚拟节点位置
*/
public void testBalance() {
Set<Long> sets = circle.keySet();// 获得TreeMap中所有的Key
SortedSet<Long> sortedSets = new TreeSet<Long>(sets);// 将获得的Key集合排序
for (Long hashCode : sortedSets) {
System.out.println(hashCode);
}
System.out.println("----each location 's distance are follows: ----");
/*
* 查看用MD算法生成的long hashCode 相邻两个hashCode的差值
*/
Iterator<Long> it = sortedSets.iterator();
Iterator<Long> it2 = sortedSets.iterator();
if (it2.hasNext())
it2.next();
long keyPre, keyAfter;
while (it.hasNext() && it2.hasNext()) {
keyPre = it.next();
keyAfter = it2.next();
System.out.println(keyAfter - keyPre);
}
}
public static void main(String[] args) {
Set<String> nodes = new HashSet<String>();
nodes.add("table_01");
nodes.add("table_02");
nodes.add("table_03");
nodes.add("table_04");
nodes.add("table_05");
nodes.add("table_06");
nodes.add("table_07");
nodes.add("table_08");
nodes.add("table_09");
nodes.add("table_00");
ConsistentHash<String> consistentHash = new ConsistentHash<String>(new HashFunction(), 100, nodes);
System.out.println("hash circle size: " + consistentHash.getSize());
System.out.println("location of each node are follows: ");
// consistentHash.testBalance();
int table_01 = 0;
int table_02 = 0;
int table_03 = 0;
int table_04 = 0;
int table_05 = 0;
int table_06 = 0;
int table_07 = 0;
int table_08 = 0;
int table_09 = 0;
int table_00 = 0;
for (int i = 0; i < 1000; i++) {
String res = consistentHash.get(i);
switch (res) {
case "table_01":
table_01++;
break;
case "table_02":
table_02++;
break;
case "table_03":
table_03++;
break;
case "table_04":
table_04++;
break;
case "table_05":
table_05++;
break;
case "table_06":
table_06++;
break;
case "table_07":
table_07++;
break;
case "table_08":
table_08++;
break;
case "table_09":
table_09++;
break;
case "table_00":
table_00++;
break;
default:
break;
}
}
System.out.println("table_01:" + table_01);
System.out.println("table_02:" + table_02);
System.out.println("table_03:" + table_03);
System.out.println("table_04:" + table_04);
System.out.println("table_05:" + table_05);
System.out.println("table_06:" + table_06);
System.out.println("table_07:" + table_07);
System.out.println("table_08:" + table_08);
System.out.println("table_09:" + table_09);
System.out.println("table_00:" + table_00);
}
}
上一篇: 【Python】bisect二分查找
下一篇: 取余和一致性hash算法