欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

决策树的sklearn实现及其GraphViz可视化

程序员文章站 2024-03-19 20:27:34
...

这一部分,我使用了sklearn来调用决策树模型对葡萄酒数据进行分类。在此之外,使用Python调用AT&T实验室开源的画图工具GraphViz软件以实现决策树的可视化。

from sklearn.datasets import load_iris
from sklearn import tree
from sklearn.externals.six import StringIO
import pydot
dot_data = StringIO()
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("iris.pdf")

这是一段基本的利用pydot+GraphViz实现决策树可视化的代码。由于缺少pydot库,直接无法执行,我们在命令行中pip install pydot后再执行,发现报错:

AttributeError: ‘list’ object has no attribute ‘write_pdf’

在*中搜索此问题,发现我们要将pydot改为pydotplus,好吧,现在连库都升plus了,继续pip install pydotplus,执行,发现继续报错:

InvocationException:GraphViz’s executables not found

这意味着我们还缺一个GraphViz软件,关于其安装,我整理了一份靠谱攻略:GraphViz配置指南。配置完成后,重启IDE,得以顺利执行代码。下面,我写了一段利用sklearn对葡萄酒数据集进行分类、利用pydotplus+GraphViz进行决策树可视化的代码,可供测试,数据见葡萄酒数据集

Python源码

# !/usr/bin/env python3
# coding=utf-8
"""
Decision Tree on the Basis of sklearn module
Author  :Chai Zheng
Blog    :http://blog.csdn.net/chai_zheng/
Github  :https://github.com/Chai-Zheng/Machine-Learning
Email   :aaa@qq.com
Date    :2017.10.13
"""

import os
import time
import pydotplus
import numpy as np
from sklearn import tree
from sklearn.externals.six import StringIO
from sklearn.model_selection import train_test_split

print('Step 1.Loading data...')
data = np.loadtxt("Wine.txt",delimiter=',')
x = data[:,1:14]
y = data[:,0].reshape(178,1)
X_train,X_test,Y_train,Y_test = train_test_split(x,y,test_size=0.4)
print('---Loading and splitting completed.')

print('Step 2.Training...')
startTime = time.time()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train,Y_train)
print('---Training Completed.Took %f s.'%(time.time()-startTime))

print('Step 3.Testing...')
Y_predict = clf.predict(X_test)
matchCount = 0
for i in range(len(Y_predict)):
    if Y_predict[i] == Y_test[i]:
        matchCount += 1
accuracy = float(matchCount/len(Y_predict))
print('---Testing completed.Accuracy: %.3f%%'%(accuracy*100))

feature_name = ['Alcohol','Malic Acid','Ash','Alcalinity of Ash','Magnesium','Total Phenols',
                'Flavanoids','Nonflavanoid Phenols','Proantocyanins','Color Intensity','Hue',
                'OD280/OD315 of Diluted Wines','Proline']
target_name = ['Class1','Class2','Class3']

dot_data = StringIO()
tree.export_graphviz(clf,out_file = dot_data,feature_names=feature_name,
                     class_names=target_name,filled=True,rounded=True,
                     special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("WineTree.pdf")
print('Visible tree plot saved as pdf.')

自动生成的可视化决策树被保存在当前目录下的“WineTree.pdf”文件中,如下所示:
决策树的sklearn实现及其GraphViz可视化

 

是不是第一次看到这么清晰明了的分类模型?可以看到,我们使用GINI指数来选择最优划分属性,并且经剪枝后的决策树只用到了数据13个属性中的Flavanoids、Color Insenty、Proline这三个属性,可以说是非常简洁了。在测试集中进行测试,结果如下:

 


决策树的sklearn实现及其GraphViz可视化

 

由于数据拆分的随机性,测试准确率大概在85%-95%之间,不算太高。但胜在模型直观、可解释性强,并且运算速度非常快。