matplotlib实现TensorFlow训练过程的可视化
程序员文章站
2024-03-19 18:27:22
...
matplotlib实现TensorFlow训练过程的可视化
本篇博客介绍使用matplotlib实现TensorFlow训练过程的可视化,下面是代码:
# encoding:utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 添加层 def add_layer(inputs, in_size, out_size, activation_function=None): W = tf.Variable(tf.random_normal([in_size, out_size])) b = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, W) + b if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs # 生成输入数据、噪点和输出数据 x_data = np.linspace(-1, 1, 300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5+noise xs = tf.placeholder(tf.float32, [None, 1]) ys = tf.placeholder(tf.float32, [None, 1]) # 隐藏层和输出层 l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) prediction = add_layer(l1, 10, 1, activation_function=None) # 损失值 loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) # 用梯度下降更新loss train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # 初始化所有参数 init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) figure = plt.figure() ax = figure.add_subplot(1, 1, 1) ax.scatter(x_data, y_data) plt.ion() plt.show() # 训练1000次 for i in range(1000): sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: # print(sess.run(loss, feed_dict={xs: x_data, ys: y_data})) try: ax.lines.remove(lines[0]) except Exception: pass prediction_value = sess.run(prediction, feed_dict={xs: x_data, ys: y_data}) lines = ax.plot(x_data, prediction_value, 'r-', lw=5) plt.pause(0.1)
结果:
可以看到一条红线不断地去拟合数据点。
推荐阅读
-
《一个图像复原实例入门深度学习&TensorFlow—第十篇》训练过程可视化
-
Tensorflow 可视化 Tensorboard2 训练过程
-
matplotlib实现TensorFlow训练过程的可视化
-
Tensorflow神经网络的实现过程
-
卷积神经网络CNN:Tensorflow实现(以及对卷积特征的可视化)
-
python中matplotlib实现最小二乘法拟合的过程详解
-
python中matplotlib实现最小二乘法拟合的过程详解
-
Pytorch从入门到放弃(7)——可视化模型训练过程中的loss变化
-
通过python的matplotlib包将Tensorflow数据进行可视化的方法
-
Tensorflow实现在训练好的模型上进行测试