厌倦了Python训练?C++版本PyTorch尝试一下
喜欢就关注我们吧!
PyTorch的流行给深度学习的发展带来了巨大的便利,然而工业界和嵌入式平台对于深度学习的应用还远远不够,很重要的一个原因就是Python在效率方面不能满足工业界的需求。PyTorch 1.5正式版的发布则是填补了PyTorch在这个方面的空缺。今天的一篇文章就为大家简单介绍一下如何用C++版本的PyTorch来训练。
原文作者:Venkata Chintapalli
翻译:zdi
PyTorch 1.5稳定版的一个重要更新就是增加了对于C++前端API的支持。C++API的支持对于要求低延迟,多线程,高并发的系统的很有必要。PyTroch的文档中对此有详细的说明(点击阅读原文即可查看)。本文以一个两层的神经网络为例带大家入门PyTorch的C++用法,后续还会为大家带来更多有关PyTorch的C++使用的教程。
Libtorch C++库的安装
首先介绍一下如何安装,安装其实很简单,只需要从PyTorch官方下载代码,解压编译即可。
wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
unzip libtorch-shared-with-deps-latest.zip
这里只是针对最新版本的配置,对于不同的硬件条件和深度学习环境,请大家参考https://pytorch.org/tutorials/advanced/cpp_frontend.html查看。
下载完成之后的步骤是编译libtorch。
//build the example
mkdir build
cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch
// run the example
cmake --build . --config Release
正常的输出为:
$ cmake -DCMAKE_PREFIX_PATH=~/pytorch/libtorch
CMake Warning:
No source or binary directory provided. Both will be assumed to be the
same as the current working directory, but note that this warning will
become a fatal error in future CMake releases.
-- The C compiler identification is GNU 7.5.0
-- The CXX compiler identification is GNU 7.5.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Found Torch: /home/yasasri/pytorch/libtorch/lib/libtorch.so
-- Configuring done
-- Generating done
-- Build files have been written to: /home/yasasri/code/PyTorchCppFrontEnd
(base) aaa@qq.com:~/code/PyTorchCppFrontEnd$ cmake --build . --config Release
Scanning dependencies of target TwoLayerNetwork
[ 50%] Building CXX object CMakeFiles/TwoLayerNetwork.dir/TwoLayerNetwork.cpp.o
[100%] Linking CXX executable TwoLayerNetwork
[100%] Built target TwoLayerNetwork
张量
PyTorch中最基础的三个模块为:张量,自动求导和网络模块。由于Python是动态语言,因此在Python中声明张量不需要指定变量类型,而C++是一门静态语言,在编码过程中指定变量类型,因此可以更快更安全的执行。因此将PyTorch的Python代码转化为C++代码的第一步就是指定变量类型。现代C++同样支持了 auto 类型的变量类型,编译器会在编译过程中自动为变量分配类型。
假设我们想要构造一个输入输出为随机值的函数
在PyTorch的Python接口中我们的写法为:
# Pythonx = torch.randn(N, D_in)y = torch.randn(N, D_out)
对应的C++写法为:
// C++
torch::Tensor x = torch::rand({N, D_in});
torch::Tensor y = torch::rand({N, D_out});
在这里我们用作用域运算符::取代了Python中.的用法。
两层的神经网络模型
使用Python在PyTorch中定义模型时,需要继承torch.nn.Module。子类会相应继承父类的方法和属性,在Python中定义一个两层的神经网络的代码为:
# Pythonimport torch
class TwoLayerNet(torch.nn.Module):
def __init__(self, D_in, H, D_out): super(TwoLayerNet, self).__init__() self.linear1 = torch.nn.Linear(D_in, H) self.linear2 = torch.nn.Linear(H, D_out) def forward(self.x): h_relu = self.linear1(x).clamp(min=0) y_pred = self.linear2(h_relu) return y_pred
C++定义神经网络的方法是使用结构体(struct),值语义(value semantics)和引用语义(reference semantics)的都可以用于创建模型。使用值语义的代码为:
// C++ value semantics#include <torch/torch.h>// C++ neural network model defined with value semanticsstruct TwoLayerNet : torch::nn::Module { // constructor with submodules registered in the initializer list TwoLayerNet(int64_t D_in, int64_t D_out, int64_t H) : linear1(register_module("linear1", torch::nn::Linear(D_in, H))), linear2(register_module("linear2", torch::nn::Linear(H, D_out))) {} torch::Tensor forward(torch::Tensor x) { x = torch::relu(linear1->forward(x)); x = linear2->forward(x); return x; } torch::nn::Linear linear1; torch::nn::Linear linear2;};// Usage: access the object using dot . operatorTwoLayerNet model(D_in, D_out, H);model.to(device);model.forward(x);model.parameters();
子类使用register_module() 方法可以调用父类的属性和方法:
/// Registers a submodule with this `Module`.////// This method deals with `ModuleHolder`s.////// Registering a module makes it available to methods such as /// `modules()`, `clone()` or `to()`.////// \rst/// .. code-block:: cpp////// MyModule::MyModule() {/// submodule_ = register_module("linear", torch::nn::Linear(3, 4));/// }/// \endrsttemplate <typename ModuleType>std::shared_ptr<ModuleType> register_module( std::string name, ModuleHolder<ModuleType> module_holder);
使用引用语义定义在C++中定义网络的方法是使用std::shared_ptr。TORCH_MODULE(TwoLayerNet)的宏定义定义了两层的网络结构。PyTorch推荐使用引用语义的方式在C++中定义模型,具体的代码为:
// C++ neural network model defined with reference semanticsstruct TwoLayerNetImpl : torch::nn::Module { // module holders are assigned in the constructor TwoLayerNetImpl(int64_t D_in, int64_t D_out, int64_t H) : linear1(D_in, H), linear2(H, D_out) { register_module("linear1", linear1); register_module("linear2", linear2); } ... // forward() method torch::nn::Linear linear1{nullptr}; //construct an empty holder torch::nn::Linear linear2{nullptr}; //construct an empty holder};TORCH_MODULE(TwoLayerNet);// Usage: access the object using arrow -> operatorTwoLayerNet model(D_in, D_out, H);model->to(device);model->forward(x);model->parameters();
优化器
Python和C++的优化器代码类似:
# Python SGD optimizer
learning_rate = 1e-4
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.5)
# Zero the gradients before running the backward pass
optimizer.zero_grad()
# Update weights
optimizer.step()
C++代码为:
// C++ SGD optimizerfloat_t learning_rate = 1e-4;torch::optim::SGD optimizer( model.parameters(), torch::optim::SGDOptions(learning_rate).momentum(0.5));// Zero the gradients before running the backward passoptimizer.zero_grad()// Update the weightsoptimizer.step()
结果对比
在Ubuntu 18.04的机器上,C++的效率大致是Python的两倍,下图为对比结果
可以看到C++大致能达到两倍以上的加速效果,本文完整的代码链接为:https://github.com/venkatacrc/PyTorchCppFrontEnd。后续我们也将为大家带来更多有关于PyTorch C++用法(MNIST和DCGAN)和TensorRT的用法,敬请期待。
往期推荐
简单好用的深度学习论文绘图专用工具包--Science Plot
AIZOO,打造中国最大的深度学习和人工智能社区,欢迎关注我们,也欢迎添加下方小助手的微信,邀请您加入我们的千人深度学习爱好者社区。
欢迎扫描下方的二维码添加小助手微信,邀请您加入我们的微信交流群。
群里有多位清北复交、BAT、AI独角兽大牛和众多深度学习er在一起愉快的交流技术,有任何问题,都可以咨询大家,欢迎你的加入哦。
添加小助手微信,邀您进AIZOO技术交流群
来都来了,点个在看再走呗~
上一篇: Python后台开发基础--模型类实现
下一篇: vue组件的挂载方式