欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PCL迭代最近点算法(ICP)的C++实现

程序员文章站 2024-03-17 19:07:46
...

简介:
在*中是这样介绍迭代最近点算法。迭代最近点(ICP)是一种用于最小化两点云之间差异的算法。给定P、Q两个点集,求解旋转矩阵R和平移矩阵T使得min{distance(P,Q)}.
C++算法流程图:
PCL迭代最近点算法(ICP)的C++实现
四元数求解方法
PCL迭代最近点算法(ICP)的C++实现
PCL迭代最近点算法(ICP)的C++实现
C++代码

/**

** Filename:icp.h

** Copyright (c) 2017-2018 

** Author:Rson

** Date:2018/04/03

** Modifier:

** Date:

** Description: 

**

** Version:

**/

#ifndef _ICP_H
#define _ICP_H

#include <vector>
#include <string>

#include <pcl\point_cloud.h>
#include <pcl\point_types.h>
#include <pcl\visualization\pcl_visualizer.h>

struct Vertex
{
    double coord[3];
};

struct Point
{
    float x;
    float y;
    float z;
};

class ICP
{
public:
    ICP();
    ICP(int controlnum=1000,double thre=0.01,int iter=100);
    virtual ~ICP();

    void readfile(std::string firstname, std::string secondname);
    void run();
    void writefile(std::string name);
    void showcloud(std::string firstname, std::string secondname,std::string thirdname);

private:
    void initransmat();//初始化旋转矩阵和平移矩阵
    void sample();//采样控制点
    double closest();//找出最近点并返回误差
    void getcenter();//获取两个控制点的中心
    void rmcontcenter();//移动两个控制点的中心
    void transform();//将四元数转换成矩阵并更新整个旋转矩阵
    void uprotate();// 更新变换矩阵
    void uptranslate();
    void updata();//更新控制点坐标
    void applyall();

private:
    double distance(Vertex a, Vertex b);
    void printTT();
    void printTR();


private:
    int conNum;//控制点数目
    int iterate;//迭代次数
    double threshold;//阈值
    std::vector<Vertex> VarrP;//起始点
    std::vector<Vertex> VarrQ;
    Vertex meanP;//控制点中心
    Vertex meanQ;
    Vertex *contP;//P控制点
    Vertex *contQ;
    Vertex *rmcoP;//移动后的控制点
    Vertex *rmcoQ;

    int *index; //在采样控制点和寻找相应的点索引时使用

    double TT[3];//平移向量
    double TR[3][3];//旋转矩阵
    double Rw[3][3];//旋转的步距
    double Tw[3];//平移的步距
    double quad[4];//四元数


};

#endif  /* ICP_H */
/**

** Filename:icp.cpp

** Copyright (c) 

** Author:Rson

** Date:2018/04/03

** Modifier:

** Date:

** Description:

**

** Version:

**/
#include "stdafx.h"
#include <iostream>
#include <sstream>
#include <fstream>
#include <cassert>
#include <math.h>
#include <time.h>
#include <newmat10/newmat.h>
#include <newmat10/newmatap.h>
#include "ICP.h"


ICP::ICP()
{
}

ICP::ICP(int controlnum, double thre, int iter)
{
    conNum = controlnum;
    threshold = thre;
    iterate = iter;

    contP = new Vertex[conNum];
    assert(contP != NULL);
    contQ = new Vertex[conNum];
    assert(contQ != NULL);
    rmcoP = new Vertex[conNum];
    assert(rmcoP != NULL);
    rmcoQ = new Vertex[conNum];
    assert(rmcoQ != NULL);
    index = new int[conNum];
    assert(index != NULL);
}

ICP::~ICP()
{
    delete[] contP;
    delete[] contQ;
    delete[] rmcoP;
    delete[] rmcoQ;
    delete[] index;
}

void ICP::readfile(std::string firstname, std::string secondname)
{
    std::cout << "读取两个点云文件!!" <<std:: endl;
    ifstream in;
    in.open(firstname.c_str(), std::ios::in);
    if (!in.is_open())
    {
        std::cout << "error open!" <<std:: endl;
        system("pause");
    }
    Vertex v;
    while(in>>v.coord[0]>>v.coord[1]>>v.coord[2])
    {
        VarrP.push_back(v);
    }
    std::cout << "点云A的大小:" << VarrP.size() << std::endl;
    in.close();

    //
    in.open(secondname.c_str(), std::ios::in);
    if (!in.is_open())
    {
        cout << "error open!" << endl;
        system("pause");
    }

    //Vertex v;
    while (in >> v.coord[0] >> v.coord[1] >> v.coord[2])
    {
        VarrQ.push_back(v);
    }
    std::cout << "点云B的大小:" << VarrQ.size() << std::endl;
    in.close();
}
void ICP::run()
{
    initransmat();
    sample();
    //
    double err = closest();
    std::cout << "初始误差:error = " << err << std::endl;
    //
    for (int i = 0; i<iterate; i++)
    {
        getcenter();
        rmcontcenter();
        transform();
        uprotate();
        uptranslate();
        updata();
        double newerr = closest();
        std::cout << "迭代次数 times = " << i << std::endl;
        std::cout << "error = " << newerr << std::endl;
        double delta = fabs(err - newerr) / conNum;
        std::cout << "delta = " << delta << std::endl;
        if (delta<threshold)
            break;
        err = newerr;

    }
    printTR();
    printTT();
    applyall();
}
void ICP::writefile(std::string name)
{
    ofstream outobj;
    outobj.open(name.c_str());
    //outobj << "# Geomagic Studio" << endl;
    int num = 1;
    for (vector<Vertex>::const_iterator p = VarrP.begin(); p != VarrP.end(); p++)
    {
        Vertex v;
        v = *p;
        outobj << v.coord[0] << " " << v.coord[1] << " " << v.coord[2] << endl;
        //outobj << "p " << num++ << endl;

        //outobj << "v " << v.coord[0] << " " << v.coord[1] << " " << v.coord[2] << endl;
        //outobj << "p " << num++ << endl;
    }
    //
    outobj.close();
}

//初始化变换矩阵
//    -
//    | 1.0  0.0 0.0 | 0.0  |
//    | 0.0  1.0 0.0 | 0.0  |
//    | 0.0  0.0 1.0 | 0.0  |
//    | -------------|----- |
//    | 0.0 0.0 0.0  | 1.0  |
void ICP::initransmat()//初始化变换矩阵
{
    std::cout << "初始化变换矩阵" << endl;
    for (int i = 0; i < 3; i++)
        TT[i] = 0;
    for (int i = 0; i < 3; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            if (i != j)
                TR[i][j] = 0.0;
            else
                TR[i][j] = 1.0;
        }
    }
}


//随机选取控制点,并存储在contP中

void ICP::sample()
{
    std::cout<<"随机选取控制点,并存储在contP中"<<std::endl;
    int N = VarrP.size();
    bool *flag = new bool[N];
    assert(flag != NULL);
    for (int i = 0; i < N; i++)
        flag[i] = false;
    //随机选择一个控制点,并记录其索引
    srand((unsigned)time(NULL));
    for (int i = 0; i < conNum; i++)
    {
        while (true)
        {
            int sam = rand() % N;
            if (!flag[sam])
            {
                index[i] = sam;
                flag[sam] = true;
                break;
            }
        }
    }
    //cout<<"store control points into contP"<<endl;
    for (int i = 0; i<conNum; i++)
    {
        Vertex v = VarrP[index[i]];//
        for (int j = 0; j<3; j++)
        {
            contP[i].coord[j] = v.coord[j];
        }
    }
    delete[] flag;
}

//找出最近点并计算误差之和
double ICP::closest()
{
    //find closest points and error
    double error = 0.0;
    for (int i = 0; i < conNum; i++)
    {
        double mindist = 100.0;
        index[i] = 0;
        for (unsigned int j = 0; j < VarrQ.size(); j++)
        {
            double dist = distance(contP[i], VarrQ[j]);
            if (dist < mindist)
            {
                mindist = dist;
                index[i] = j;
            }
        }
        Vertex v = VarrQ[index[i]];
        for (int j = 0; j < 3; j++)
        {
            contQ[i].coord[j] = v.coord[j];
        }
        error += mindist;
    }
    return error;
}

//求取两个点云控制点的重心
void ICP::getcenter()
{
    //首先初始化重心坐标0,0,0
    for (int i = 0; i < 3; i++)
        meanP.coord[i] = 0.0;
    //求取每个分量之和
    for (int i = 0; i < conNum; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            meanP.coord[j] += contP[i].coord[j];
        }
    }
    //求取平均值
    for (int i = 0; i < 3; i++)
        meanP.coord[i] = meanP.coord[i] / conNum;

    //
    for (int i = 0; i < 3; i++)
        meanQ.coord[i] = 0.0;
    //求取每个分量之和
    for (int i = 0; i < conNum; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            meanQ.coord[j] += contQ[i].coord[j];
        }
    }
    //求取平均值
    for (int i = 0; i < 3; i++)
        meanQ.coord[i] = meanQ.coord[i] / conNum;
}

//点集中心化,生成新的点云数据
void ICP::rmcontcenter()
{
    std::cout << "点集中心化,生成新的点云数据" << std::endl;
    for (int i = 0; i < conNum; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            rmcoP[i].coord[j] = contP[i].coord[j] - meanP.coord[j];
            rmcoQ[i].coord[j] = contQ[i].coord[j] - meanQ.coord[j];
        }
    }
}

void ICP::transform()
{
    std::cout << "获取变换矩阵" << std::endl;
    Matrix B(4, 4);
    B = 0;
    double u[3];//di+di'
    double d[3];//di-di'
    //计算协方差
    for (int i = 0; i < conNum; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            u[j] = rmcoP[i].coord[j] + rmcoQ[i].coord[j];
            d[j] = rmcoP[i].coord[j] - rmcoQ[i].coord[j];
        }
        double uM[16] = { 
               0, -d[0], -d[1], -d[2],
            d[0],     0, -u[2], -u[1],
            d[1], -u[2],     0,  u[0],
            d[2],  u[1], -u[0],    0 };

        Matrix Ai(4, 4);
        Ai << uM;
        B += Ai * Ai.t();
    }

    Matrix U;
    Matrix V;
    DiagonalMatrix D;
    SVD(B, D, U, V);

    for (int i = 0; i < 4; i++)
    {
        quad[i] = V.element(i, 3);
    }
    B.Release();
    U.Release();
    V.Release();
    D.Release();
}

void ICP::uprotate()
{
    //根据四元数求解选择矩阵
    Rw[0][0] = quad[0] * quad[0] + quad[1] * quad[1] - quad[2] * quad[2] - quad[3] * quad[3];
    Rw[0][1] = 2 * (-quad[0] * quad[3] + quad[1] * quad[2]);
    Rw[0][2] = 2 * (quad[0] * quad[2] + quad[1] * quad[3]);
    Rw[1][0] = 2 * (quad[0] * quad[3] + quad[1] * quad[2]);
    Rw[1][1] = quad[0] * quad[0] - quad[1] * quad[1] + quad[2] * quad[2] - quad[3] * quad[3];
    Rw[1][2] = 2 * (-quad[0] * quad[1] + quad[2] * quad[3]);
    Rw[2][0] = 2 * (-quad[0] * quad[2] + quad[1] * quad[3]);
    Rw[2][1] = 2 * (quad[0] * quad[1] + quad[2] * quad[3]);
    Rw[2][2] = quad[0] * quad[0] - quad[1] * quad[1] - quad[2] * quad[2] + quad[3] * quad[3];

    //Rn+1 = R * Rn
    double tmp[3][3];
    for (int i = 0; i < 3; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            tmp[i][j] = 0;
        }
    }

    for (int i = 0; i < 3; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            for (int k = 0; k < 3; k++)
            {
                tmp[i][j] += Rw[i][k] * TR[k][j];
            }
        }
    }

    for (int i = 0; i < 3; i++)
    {
        for (int j = 0; j < 3; j++)
            TR[i][j] = tmp[i][j];
    }
}

void ICP::uptranslate()
{
    //Tw = P'-Rw * P
    double tmp[3] = { 0, 0, 0 };
    for (int i = 0; i < 3; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            tmp[i] += Rw[i][j] * meanP.coord[j];
        }
    }
    for (int i = 0; i < 3; i++)
    {
        Tw[i] = meanQ.coord[i] - tmp[i];
    }

    double temp[3] = { 0, 0, 0 };
    for (int i = 0; i < 3; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            temp[i] += Rw[i][j] * TT[j];
        }
    }
    for (int i = 0; i < 3; i++)
    {
        TT[i] = temp[i] + Tw[i];
    }
}

void ICP::updata()
{
    for (int i = 0; i < conNum; i++)
    {
        double tmp[3] = { 0, 0, 0 };
        for (int j = 0; j < 3; j++)
        {
            for (int k = 0; k < 3; k++)
            {
                tmp[j] += Rw[j][k] * contP[i].coord[k];
            }
        }
        for (int j = 0; j < 3; j++)
            contP[i].coord[j] = tmp[j] + Tw[j];
    }
}

void ICP::applyall()
{
    for (vector<Vertex>::iterator p = VarrP.begin(); p != VarrP.end(); p++)
    {
        Vertex v = *p;
        double tmp[3] = { 0, 0, 0 };
        for (int i = 0; i < 3; i++)
        {
            for (int k = 0; k < 3; k++)
            {
                tmp[i] += TR[i][k] * v.coord[k];
            }
        }
        for (int i = 0; i < 3; i++)
        {
            v.coord[i] = tmp[i] + TT[i];
        }
        *p = v;
    }
}

double ICP::distance(Vertex a, Vertex b)
{
    double dist = 0.0;
    for (int i = 0; i < 3; i++)
    {
        dist += (a.coord[i] - b.coord[i])*(a.coord[i] - b.coord[i]);
    }
    return dist;
}

void ICP::printTT()
{
    std::cout << "Translate Matrix = " << std::endl;
    for (int i = 0; i < 3; i++)
    {
        std::cout << TT[i] << " ";
    }
    std::cout << std::endl;
}

void ICP::printTR()
{
    std::cout << "Rotate Matrix = " << std::endl;
    for (int i = 0; i < 3; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            std::cout << TR[i][j] << " ";
        }
        std::cout << std::endl;
    }
}

void ICP::showcloud(std::string firstname, std::string secondname,std::string thirdname)
{
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_Target(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_Source(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloudOut(new pcl::PointCloud<pcl::PointXYZ>);

    std::cout << "显示两个点云:" << std::endl;
    //第一个点云数据
    ifstream in;
    in.open(firstname.c_str(), std::ios::in);
    if (!in.is_open())
    {
        std::cout << "error open!" << std::endl;
        system("pause");
    }
    vector<Point> points;
    points.clear();
    Point tmp;
    while (in >> tmp.x >> tmp.y >> tmp.z)
    {
        points.push_back(tmp);
    }
    pcl::PointXYZ cltmp;

    for (size_t i = 0; i != points.size();i++)
    {
        cltmp.x = points[i].x;
        cltmp.y = points[i].y;
        cltmp.z = points[i].z;
        cloud_Target->points.push_back(cltmp);
    }
    std::cout << "点云A的大小:" << cloud_Target->size() << std::endl;
    in.close();

    //第二个点云数据
    in.open(secondname.c_str(), std::ios::in);
    if (!in.is_open())
    {
        std::cout << "error open!" << std::endl;
        system("pause");
    }
    points.clear();
    while (in >> tmp.x >> tmp.y >> tmp.z)
    {
        points.push_back(tmp);
    }
    //pcl::PointXYZ cltmp;

    for (size_t i = 0; i != points.size(); i++)
    {
        cltmp.x = points[i].x;
        cltmp.y = points[i].y;
        cltmp.z = points[i].z;
        cloud_Source->points.push_back(cltmp);
    }
    std::cout << "点云B的大小:" << cloud_Source->size() << std::endl;
    in.close();

    //第三个点云数据
    in.open(thirdname.c_str(), std::ios::in);
    if (!in.is_open())
    {
        std::cout << "error open!" << std::endl;
        system("pause");
    }
    points.clear();
    while (in >> tmp.x >> tmp.y >> tmp.z)
    {
        points.push_back(tmp);
    }
    //pcl::PointXYZ cltmp;

    for (size_t i = 0; i != points.size(); i++)
    {
        cltmp.x = points[i].x;
        cltmp.y = points[i].y;
        cltmp.z = points[i].z;
        cloudOut->points.push_back(cltmp);
    }
    std::cout << "点云C的大小:" << cloudOut->size() << std::endl;
    in.close();


    //可视化初始化
    pcl::visualization::PCLVisualizer viewer;
    viewer.setCameraFieldOfView(0.785398);//fov 45°  视场角
    viewer.setBackgroundColor(0.2, 0.2, 0.2);
    viewer.setCameraPosition(
        0, 0, 0,
        0, 0, -1,
        0, 0, 0);
    //点云可视化
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> TargetHandler(cloud_Target, 255, 0, 0);
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> SourceHandler(cloud_Source, 0, 0, 255);
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> OutHandler(cloudOut, 0, 255, 0);
    viewer.addPointCloud(cloud_Target, TargetHandler, "cloud_Target");
    viewer.addPointCloud(cloud_Source, SourceHandler, "cloud_Source");
    viewer.addCoordinateSystem(0.1, "cloud", 0);


    int v2 = 1;
    viewer.createViewPort(0.5, 0, 1, 1, v2);
    viewer.createViewPortCamera(v2);
    viewer.setCameraFieldOfView(0.785398, v2);//fov 45°
    viewer.setBackgroundColor(0.2, 0.2, 0.2,v2);
    viewer.setCameraPosition(
        0, 0, 0,
        0, 0, -1,
        0, 0, 0,v2);
    //点云可视化
    viewer.addPointCloud(cloud_Target, TargetHandler, "cloud222", v2);
    viewer.addPointCloud(cloudOut, OutHandler, "cloudOut",v2);
    viewer.addCoordinateSystem(0.1, "cloud1", v2);
    while(!viewer.wasStopped())
    {
        viewer.spinOnce();
    }
}
//主程序
#include "stdafx.h"
#include <iostream>
#include <pcl\common\transforms.h>
#include <pcl\io\pcd_io.h>
#include <pcl\visualization\pcl_visualizer.h>
#include <pcl\registration\icp.h>
#include "ICP.h">
#include <iostream>
#include <time.h>
int main()
{
    clock_t start, finish;
    start = clock();
    ICP myicp(1000, 0.00001, 50);
    myicp.readfile("bunny_0.asc", "bunny_1.asc");
    myicp.run();
    myicp.writefile("out.asc");
    finish = clock();
    std::cout << "运行时间:" << (finish - start) / 1000 << "s" << std::endl;
    myicp.showcloud("bunny_0.asc", "bunny_1.asc", "out.asc");
    system("pause");
    return 0;
}
相关标签: ICP PCL