CH6801 棋盘覆盖(二分图最大匹配)
程序员文章站
2024-03-17 16:00:52
...
题意:给定一个 N*N 的棋盘,棋盘上有些位置不能防止任何东西,现用 1*2 的骨牌填充棋盘,问最多能铺多少块骨牌。
分析:和骑士共存差不多的经典题,算是板子题,详见《算法竞赛进阶指南》P422,状压dp(插头dp)也可以做。
代码:
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 106;
const int dx[4] = {0,0,1,-1};
const int dy[4] = {1,-1,0,0};
int n, m, ans, f[N*N];
bool b[N][N], v[N*N];
vector<int> e[N*N];
bool dfs(int x) {
for (unsigned int i = 0; i < e[x].size(); i++) {
int y = e[x][i];
if (v[y]) continue;
v[y] = 1;
if (f[y] == -1 || dfs(f[y])) {
f[y] = x;
return 1;
}
}
return 0;
}
int main() {
cin >> n >> m;
while (m--) {
int x, y;
scanf("%d %d", &x, &y);
b[x-1][y-1] = 1;
}
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (!b[i][j])
for (int k = 0; k < 4; k++) {
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < n && y >= 0 && y < n && !b[x][y]) {
e[i*n+j].push_back(x * n + y);
e[x*n+y].push_back(i * n + j);
}
}
memset(f, -1, sizeof(f));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
if ((i ^ j) & 1) continue;
memset(v, 0, sizeof(v));
ans += dfs(i * n + j);
}
cout << ans << endl;
return 0;
}
上一篇: python 函数(函数的参数)
下一篇: JS的一些时间获取和计算公用方法封装